微RNA在脓毒症相关急性肾损伤中的作用

2025-02-19 00:00:00周思岑吕信鹏邓颖
中国现代医生 2025年1期
关键词:生物标志物靶点

[摘要]"脓毒症相关急性肾损伤(sepsis-associated"acute"kidney"injury,SA-AKI)是脓毒症患者的常见并发症之一。根据现有SA-AKI诊断标准,大多数患者被发现时,其肾脏损伤已处于不可逆阶段。因此,SA-AKI的早期诊断和治疗对防止疾病进一步恶化非常重要。微RNA(microRNA,miRNA)是一种非编码RNA,在转录过程中可调节其靶基因的表达。已有研究探讨miRNA作为SA-AKI的生物标志物和治疗靶点的可能性。本文总结目前关于miRNA作为SA-AKI的生物标志物和治疗靶点的研究进展。

[关键词]"脓毒症相关急性肾损伤;微RNA;生物标志物;靶点

[中图分类号]"R692.5""""""[文献标识码]"A""""""[DOI]"10.3969/j.issn.1673-9701.2025.01.032

脓毒症相关急性肾损伤(sepsis-associated"acute"kidney"injury,SA-AKI)是脓毒症患者的常见并发症之一,也是导致脓毒症患者预后不良的主要原因之一。微RNA(microRNA,miRNA)作为各种疾病的生物标志物及治疗靶点的研究正在不断深入,miRNA的应用为SA-AKI的诊断和治疗带来曙光。本文就miRNA作为SA-AKI的生物标志物及治疗靶点作如下综述。

1""SA-AKI的生物标志物概述

脓毒症被定义为宿主对感染的反应失调引起的多器官功能障碍综合征[1]。SA-AKI是脓毒症常见并发症之一,其发病率和死亡率始终居高不下[2]。急性肾损伤(acute"kidney"injury,AKI)是指由多种原因引起的肾功能和/或尿量迅速下降,导致水、电解质和酸碱平衡失调的临床综合征[3]。大多数SA-AKI患者被发现时已发展至肾小管损伤不可逆阶段。因此,早期识别SA-AKI有助于提供支持性治疗,避免SA-AKI进一步发展。目前,SA-AKI以肌酐水平和尿量作为其诊断指标,但只有超过50%的肾单位受损时,血清肌酐水平才开始升高[4];且血清肌酐水平的变化并不具有特异性,其受肌肉量、饮食、性别、年龄、药物和胆红素水平等因素的影响。尿量受利尿剂、治疗方法等因素影响。故基于血清肌酐水平和尿量下降的常规肾功能评估已不再适用于临床诊断,需要更加准确、快速、易获取、可确定肾功能障碍严重程度的生物标志物[5]。肾损伤分子-1(kidney"injury"molecule-1,KIM-1)是一种含有6-半胱氨酸结构的Ⅰ型糖蛋白。在缺血性事件发生24~48h后,该基因表达水平上调。白细胞介素(interleukin,IL)-18属于IL-1家族成员,是单核/巨噬细胞和其他抗原呈递细胞产生的促炎细胞因子。IL-18水平在肾损伤后约6h开始上升,并在12~18h达到峰值。中性粒细胞明胶酶相关脂质运载蛋白(neutrophil"gelatinase-"associated"lipocalin,NGAL)是与中性粒细胞明胶酶共价结合的蛋白质。有证据表明,其可能是已知最早的肾损伤标志物,NGAL水平升高可在肾小管损伤后3h内出现,6h达到峰值[6]。金属蛋白酶组织抑制剂-2(tissue"inhibitor"of"metalloproteinase-2,TIMP-2)和胰岛素样生长因子结合蛋白-7(insulin-like"growth"factor-binding"protein-7,IGFBP-7)是细胞周期阻滞蛋白,在细胞损伤早期表达上调。TIMP-2和IGFBP-7的组合是识别AKI早期阶段的指标[6]。尽管这些生物标志物可早期诊断SA-AKI,但使用并不广泛,且不能作为治疗靶点。因此,新的生物标志物和治疗靶点对早期诊断和预测SA-AKI的严重程度及治疗十分必要。

2""miRNA的合成与分泌

miRNA是由19~23个核苷酸组成的内源性非编码RNA。miRNA的合成过程复杂,需要多种转录酶和辅助蛋白的作用。在合成miRNA的过程中,大部分初级miRNA由RNA聚合酶Ⅱ转录而来[7]。随后,RNA聚合酶Ⅲ(Drosha)及其辅助因子DGCR8将初级miRNA切割为前体miRNA。前体miRNA通过输出蛋白5/GTP结合蛋白Ran复合物从细胞核转运至细胞质中,被RNA聚合酶Ⅲ(Dicer)进一步切割为双链miRNA。双链miRNA与Argonaute蛋白相互作用,形成RNA诱导的沉默复合体,最终形成成熟的单链miRNA。miRNA在细胞核内转录加工,在细胞质中合成,以微囊泡形式进入循环,被分泌到血液或尿液中,作用于受体细胞,参与真核生物的转录,沉默其靶基因,抑制目的基因蛋白的翻译[7]。miRNA具有保守性,在不同的组织和细胞中表达,通过靶向多个分子对基因表达进行调控,参与广泛的生物学过程,包括细胞生长、发育、分化和凋亡等[8]。近年来,越来越多的研究发现,miRNA在SA-AKI的发展中发挥重要作用,miRNA已成为肾脏疾病中重要的转录后基因表达调控因子。

3""miRNA作为SA-AKI的生物标志物

3.1""概述

研究表明在人体器官的特定发育阶段或疾病进展中,许多miRNA高度密集[9];如肾皮质密集miRNA-192[10]。在细胞外,miRNA首次在肿瘤患者血清/血浆中被发现[11]。miRNA可在多种体液中被检测到,如血清、唾液、泪液和尿液等[12]。在器官受损过程中,miRNA通常被释放到生物体液中[13]。细胞外miRNA在室温和pH变化及多次冻融循环下也可长期稳定存在[14-16]。因此,血液或尿液中的miRNA可作为潜在的生物标志物,为肾脏疾病的诊断提供新的方法和思路[17]。

3.2""研究进展

Aomatsu等[18]研究证实miR-5100上调可通过调节多种凋亡途径部分抑制SA-AKI进展,miR-5100可作为SA-AKI的生物标志物。miR-210、miR-494的高表达与患者尿素氮、血清肌酐水平、胱抑素C水平呈正相关,miR-205低水平表达与其呈负相关。在SA-AKI生存者中,miR-210、miR-494表达水平显著降低,miR-205表达水平升高。miR-210、miR-494对SA-AKI的诊断发挥作用,miR-205是SA-AKI的独立危险因素[19]。另有研究证明miR-29a在SA-AKI中的表达水平降低[20];且miR-29a、miR-10a-5p二者联合对预测SA-AKI患者28d生存率有较高的临床价值[21]。朱先华[22]研究发现血清miR-10a在SA-AKI患者中表达升高,可预测SA-AKI预后。Zhang等[23]研究发现尿液中的miR-26b在SA-AKI患者中升高,其诊断SA-AKI的特异性可达75%、敏感度可达90.8%,可用于诊断SA-AKI并反映疾病的严重程度。与非SA-AKI个体相比,SA-AKI患者的血清和尿液中miR-22-3p表达水平降低,可作为SA-AKI患者28d生存率的预测生物标志物[24]。另有研究证明,与非SA-AKI患者相比,SA-AKI患者的miR-574-5p表达上调较少,且与肾损伤生物标志物相关,故血清miR-574-5p可能成为预测SA-AKI的生物标志物[25]。

3.3""局限性

多项研究证明miRNA可作为SA-AKI早期诊断的特异性生物标志物,也可用以预测患者预后。但将miRNA用于临床仍存在局限性。如miRNA可稳定地存在于各种体液中,但不同体液的miRNA检测结果可能存在差异。因此需进一步研究确定不同体液中miRNA是否均可作为SA-AKI的生物标志物。

4""miRNA作为SA-AKI的治疗靶点

4.1""miRNA在SA-AKI发病机制的概述

目前普遍认为SA-AKI的主要发病机制包括炎症反应、氧化应激、细胞凋亡和细胞焦亡等。研究表明miRNA不仅参与SA-AKI的发生发展,还可调节脓毒症各个阶段[26-29]。

4.2""miRNA在SA-AKI炎症反应与细胞凋亡机制中的作用

SA-AKI的发病机制与肾脏血流动力学异常、炎症损伤及细胞凋亡密切相关。在脂多糖(lipopo-"lysaccharides,LPS)诱导的SA-AKI中,miR-128-3p靶向神经纤毛蛋白-1基因降解,促进炎症细胞浸润,增加炎症因子表达,降低肾细胞活力,增加细胞凋亡[30]。在SA-AKI患者中,miR-34b-5p表达水平升高,水通道蛋白2(aquaporin"2,AQP2)是miR-34b-5p的下游靶标,miR-34b-5p可抑制AQP2表达,促进LPS诱导的HK-2细胞凋亡和炎症反应[31]。

迄今为止,除上述致病性miRNA外,也有许多miRNA被证明对SA-AKI有保护作用。Zhang等[32]发现miR-132-3p过表达可靶向抑制KIM-1,抑制肾细胞凋亡和炎症进展,从而对脓毒症小鼠发挥肾脏保护作用。Luo等[33]研究证实miR-942-5p在LPS处理的HK-2细胞中表达水平降低,miR-942-5p过表达可靶向叉头框O3(forkhead"box"O3,FOXO3),抑制LPS诱导的HK-2细胞炎症反应和凋亡。在LPS诱导的SA-AKI小鼠肾脏中,notch受体3(notch"receptor"3,NOTCH3)表达水平上升,miR-201-5p表达水平下降,miR-201-5p通过抑制LPS激活Toll样受体4信号通路,保护肾细胞,抑制凋亡和炎症反应[34]。

miR-21是AKI中被研究得最多的miRNA之一。Xu等[35]发现miR-21具有双重效应,参与不同病理生理过程。Fu等[36]研究表明miR-21过表达可通过调节第10号染色体上缺失与张力蛋白同源的磷酸酶/磷脂酰肌醇3激酶/蛋白激酶B信号通路对脓毒症诱导的肾细胞凋亡发挥保护作用。Yang等[37]发现在LPS诱导的肾脏组织中母系表达基因3(maternally"expressed"gene"3,MEG3)表达上调,MEG3在细胞中作为miR-21的竞争内源性RNA发挥作用,抑制MEG3可减轻LPS诱导的细胞凋亡,miR-21可通过靶向程序性细胞死亡蛋白4(programmed"cell"death"protein"4,PDCD4)抑制细胞凋亡,MEG3/miR-21/PDCD4轴可作为SA-AKI的治疗靶点。

4.3""miRNA在SA-AKI焦亡机制中的作用

焦亡是由识别病原体相关分子模式、损伤相关分子模式和炎症因子引起的热死亡,是脓毒症休克和组织损伤进展相关程序性坏死的最重要形式。研究发现硫氧还蛋白相互作用蛋白(thioredoxin-interacting"protein,TXNIP)是miR-93-5p的直接靶标,miR-93-5p直接调控TXNIP影响肾上皮细胞焦亡,为治疗SA-AKI提供新靶点[38]。此外,有研究证实miR-30c-5p通过TXNIP负调控NOD样受体热蛋白结构域相关蛋白3(NOD-like"receptor"thermal"protein"domain"associated"protein"3,NLRP3)信号通路相关的焦亡和SA-AKI损伤,表明该轴可能是SA-AKI患者的治疗靶点[39]。关于更多miRNA在SA-AKI细胞焦亡机制中的作用仍需进一步实验证明。

4.4""miRNA在SA-AKI氧化应激机制中的作用

脓毒症以全身炎症和活性氧产生增加为特征,同时释放一氧化氮与超氧化物反应,形成活性氮。活性氧和活性氮可降低一氧化氮的生物利用度,介导肾脏微循环异常,导致局部组织缺氧和线粒体功能障碍,从而启动细胞损伤,最终导致AKI。miR-"214-5p可加重LPS诱导的炎症和氧化应激,其拮抗剂可通过抑制氧化应激减轻SA-AKI,miR-214-5p是SA-AKI治疗的靶点[40]。

5""结论

本文总结miRNA在SA-AKI中的作用。越来越多的证据提示miRNA在早期诊断SA-AKI方面具有潜力。另外,miRNA参与SA-AKI的发生发展,在保护性和致病性方面发挥作用,为SA-AKI的治疗提供新的方向。然而仍需进一步的实验以确定miRNA的治疗效果,并保证miRNA治疗SA-AKI的安全性和有效性。

利益冲突:所有作者均声明不存在利益冲突。

[参考文献]

[1] SINGER"M,"Deutschman"C"S,"Seymour"C"W,"et"al."The"third"international"consensus"definitions"for"sepsis"and"septic"shock"(sepsis-3)[J]."JAMA,"2016,"315(8):"801–810.

[2] BASNAKIAN"A"G."Netrin-1:"A"potential"universal"biomarker"for"acute"kidney"injury[J]."Am"J"Physiol"Renal"Physiol,"2008,"294(4):"F729–F730.

[3] ÜLGER"F,"PEHLIVANLAR"KÜÇÜK"M,"KÜÇÜK"A"O,"et"al."Evaluation"of"acute"kidney"injury"(AKI)"with"RIFLE,"AKIN,"CK,"and"KDIGO"in"critically"ill"trauma"patients[J]."Eur"J"Trauma"Emerg"Surg,"2018,"44(4):"597–605.

[4] ENDRE"Z"H,"PICKERING"J"W,"WALKER"R"J."Clearance"and"beyond:"The"complementary"roles"of"GFR"measurement"and"injury"biomarkers"in"acute"kidney"injury"(AKI)[J]."Am"J"Physiol"Renal"Physiol,"2011,"301(4):"F697–F707.

[5] ADIYANTI"S"S,"LOHO"T."Acute"kidney"injury"(AKI)"biomarker[J]."Acta"Med"Indones,"2012,"44(3):"246–255.

[6] BHOSALE"S"J,"KULKARNI"A"P."Biomarkers"in"acute"kidney"injury[J]."Indian"J"Crit"Care"Med,"2020,"24(Suppl"3):"S90–S93.

[7] MAHTAL"N,"LENOIR"O,"TINEL"C,"et"al."MicroRNAs"in"kidney"injury"and"disease[J]."Nat"Rev"Nephrol,"2022,"18(10):"643–662.

[8] IORIO"M"V,"CROCE"C"M."MicroRNA"involvement"in"human"cancer[J]."Carcinogenesis,"2012,"33(6):"1126–1133.

[9] KRIEGEL"A"J,"LIU"Y,"LIU"P,"et"al."Characteristics"of"microRNAs"enriched"in"specific"cell"types"and"primary"tissue"types"in"solid"organs[J]."Physiol"Genomics,"2013,"45(23):"1144–1156.

[10] LAGOS-QUINTANA"M,"RAUHUT"R,"YALCIN"A,"et"al."Identification"of"tissue-specific"microRNAs"from"mouse[J]."Curr"Biol,"2002,"12(9):"735–739.

[11] CHEN"X,"BA"Y,"MA"L,"et"al."Characterization"of"microRNAs"in"serum:"A"novel"class"of"biomarkers"for"diagnosis"of"cancer"and"other"diseases[J]."Cell"Res,"2008,"18(10):"997–1006.

[12] ZARJOU"A,"YANG"S,"ABRAHAM"E,"et"al."Identification"of"a"microRNA"signature"in"renal"fibrosis:"Role"of"miR-21[J]."Am"J"Physiol"Renal"Physiol,"2011,"301(4):"F793–F801.

[13] MITCHELL"P"S,"PARKIN"R"K,"KROH"E"M,"et"al."Circulating"microRNAs"as"stable"blood-based"markers"for"cancer"detection[J]."Proc"Natl"Acad"Sci"USA,"2008,"105(30):"10513–10518.

[14] MRAZ"M,"MALINOVA"K,"MAYER"J,"et"al."MicroRNA"isolation"and"stability"in"stored"RNA"samples[J]."Biochem"Biophys"Res"Commun,"2009,"390(1):"1–4.

[15] MELO"S"A,"SUGIMOTO"H,"O’CONNELL"J"T,"et"al."Cancer"exosomes"perform"cell-independent"microRNA"biogenesis"and"promote"tumorigenesis[J]."Cancer"Cell,"2014,"26(5):"707–721.

[16] PAPADOPOULOS"T,"BELLIERE"J,"BASCANDS"J"L,""et"al."MiRNAs"in"urine:"A"mirror"image"of"kidney"disease?[J]."Expert"Rev"Mol"Diagn,"2015,"15(3):"361–374.

[17] HARRILL"A"H,"SANDERS"A"P."Urinary"microRNAs"in"environmental"health:"Biomarkers"of"emergent"kidney"injury"and"disease[J]."Curr"Environ"Health"Rep,"2020,"7(2):"101–108.

[18] AOMATSU"A,"KANEKO"S,"YANAI"K,"et"al."MicroRNA"expression"profiling"in"acute"kidney"injury[J]."Transl"Res,"2022,"244:"1–31.

[19] LIN"Y,"DING"Y,"SONG"S,"et"al."Expression"patterns"and"prognostic"value"of"miR-210,"miR-494,"and"miR-205"in"middle-aged"and"old"patients"with"sepsis-induced"acute"kidney"injury[J]."Bosn"J"Basic"Med"Sci,"2019,"19(3):"249–256.

[20] ZHANG"Y,"ZHANG"Y"Y,"XIA"F,"et"al."Effect"of"lncRNA-MIAT"on"kidney"injury"in"sepsis"rats"via"regulatingnbsp;miR-29a"expression[J]."Eur"Rev"Med"Pharmacol"Sci,"2019,"23(24):"10942–10949.

[21] 霍锐,"戴敏,"樊艺,"等."MiRNA-29a和miRNA-10a-5p对脓毒症所致急性肾损伤患者28d死亡率的预测价值[J]."南方医科大学学报,"2017,"37(5):"646–651.

[22] 朱先华."血清miRNA-10a与IL-35水平对脓毒症诱导急性肾损伤患者预后评估价值[J]."浙江中西医结合杂志,"2019,"29(6):"451–456.

[23] ZHANG"J,"WANG"C"J,"TANG"X"M,"et"al."Urinary"miR-26b"as"a"potential"biomarker"for"patients"with"sepsis-"associated"acute"kidney"injury:"A"Chinese"population-"based"study[J]."Eur"Rev"Med"Pharmacol"Sci,"2018,"22(14):"4604–4610.

[24] ZHANG"H,"CHE"L,"WANG"Y,"et"al."Deregulated"microRNA-22-3p"in"patients"with"sepsis-induced"acute"kidney"injury"serves"as"a"new"biomarker"to"predict"disease"occurrence"and"28-day"survival"outcomes[J]."Int"Urol"Nephrol,"2021,"53(10):"2107–2116.

[25] LIU"S,"ZHAO"L,"ZHANG"L,"et"al."Downregulation"of"miR-574-5p"inhibits"HK-2"cell"viability"and"predicts"the"onset"of"acute"kidney"injury"in"sepsis"patients[J]."Ren"Fail,"2021,"43(1):"942–948.

[26] ROBERTS"R,"STEER"C"J."Disease"genes"and"gene"regulation"by"microRNAs[J]."J"Cardiovasc"Transl"Res,"2010,"3(3):"169–172.

[27] WANG"H,"BEI"Y,"SHEN"S,"et"al."MiR-21-3p"controls"sepsis-associated"cardiac"dysfunction"via"regulating"SORBS2[J]."J"Mol"Cell"Cardiol,"2016,"94:"43–53.

[28] WANG"X,"WANG"X,"LIU"X,"et"al."MiR-15a/16"are"upreuglated"in"the"serum"of"neonatal"sepsis"patients"and"inhibit"the"LPS-induced"inflammatory"pathway[J]."Int"J"Clin"Exp"Med,"2015,"8(4):"5683–5690.

[29] WANG"S,"WANG"J,"ZHANG"Z,"et"al."Decreased"miR-128"and"increased"miR-21"synergistically"cause"podocyte"injury"in"sepsis[J]."J"Nephrol,"2017,"30(4):"543–550.

[30] WANG"L,"WANG"K,"TIAN"Z."MiR-128-3p"inhibits"NRP1"expression"and"promotes"inflammatory"response"to"acute"kidney"injury"in"sepsis[J]."Inflammation,"2020,"43(5):"1772–1779.

[31] ZHENG"C,"WU"D,"SHI"S,"et"al."MiR-34b-5p"promotes"renal"cell"inflammation"and"apoptosis"by"inhibiting"aquaporin-2"in"sepsis-induced"acute"kidney"injury[J]."Ren"Fail,"2021,"43(1):"291–301.

[32] ZHANG"D,"LU"H,"HOU"W,"et"al."Effect"of"miR-132-3p"on"sepsis-induced"acute"kidney"injury"in"mice"via"regulating"HAVCR1/KIM-1[J]."Am"J"Transl"Res,"2021,"13(7):"7794–7803.

[33] LUO"N,"GAO"H"M,"WANG"Y"Q,"et"al."MiR-942-5p"alleviates"septic"acute"kidney"injury"by"targeting"FOXO3[J]."Eur"Rev"Med"Pharmacol"Sci,"2020,"24(11):"6237–6244.

[34] YUAN"Y"S,"FEI"M,"YANG"Y"X,"et"al."MiR-201-5p"alleviates"lipopolysaccharide-induced"renal"cell"dysfunction"by"targeting"NOTCH3[J]."Eur"Rev"Med"Pharmacol"Sci,"2020,"24(10):"5592–5603.

[35] XU"X,"KRIEGEL"A"J,"JIAO"X,"et"al."MiR-21"in"ischemia/reperfusion"injury:"A"double-edged"sword?[J]."Physiol"Genomics,"2014,"46(21):"789–797.

[36] FU"D,"DONG"J,"LI"P,"et"al."MiRNA-21"has"effects"to"protect"kidney"injury"induced"by"sepsis[J]."Biomed"Pharmacother,"2017,"94:"1138–1144.

[37] YANG"R,"LIU"S,"WEN"J,"et"al."Inhibition"of"maternally"expressed"gene"3"attenuated"lipopolysaccharide-induced"apoptosis"through"sponging"miR-21"in"renal"tubular"epithelial"cells[J]."J"Cell"Biochem,"2018,"119(9):"7800–7806.

[38] JUAN"C"X,"MAO"Y,"CAO"Q,"et"al."Exosome-mediated"pyroptosis"of"miR-93-TXNIP-NLRP3"leads"to"functional"difference"between"M1"and"M2"macrophages"in"sepsis-"induced"acute"kidney"injury[J]."J"Cell"Mol"Med,"2021,"25(10):"4786–4799.

[39] LI"X,"YAO"L,"ZENG"X,"et"al."MiR-30c-5p"alleviated"pyroptosis"during"sepsis-induced"acute"kidney"injury"via"targeting"TXNIP[J]."Inflammation,"2021,"44(1):"217–228.

[40] GUO"C,"YE"F"X,"JIAN"Y"H,"et"al."MicroRNA-214-5p"aggravates"sepsis-related"acute"kidney"injury"in"mice[J]."Drug"Dev"Res,"2022,"83(2):"339–350.

(收稿日期:2024–08–10)

(修回日期:2024–12–10)

猜你喜欢
生物标志物靶点
鸢尾素(Irisin):运动诱导骨骼肌自噬的新靶点
维生素D受体或是糖尿病治疗的新靶点
中老年保健(2021年3期)2021-12-03 02:32:25
肿瘤免疫治疗发现新潜在靶点
脓毒症急性肾损伤早期预警指标的研究进展
水环境中木质素光降解及其对有机物相关指示参数影响研究进展
基于UPLC—Q—TOF—MS技术的牛血清白蛋白诱导过敏反应的代谢组学研究
基于UPLC—Q—TOF—MS技术的牛血清白蛋白诱导过敏反应的代谢组学研究
海洋环境监测中生物标志物的研究进展
园林施工管理及其养护的探讨
心力衰竭的分子重构机制及其潜在的治疗靶点