黄连素与聚β-羟基丁酸酯对大口黑鲈生长、免疫和肠道菌群的影响

2024-08-24 00:00:00刘雅荣夏耘魏东张凯谢骏王广军龚望宝郁二蒙孙金辉
南方农业学报 2024年2期
关键词:大口菌门菌群

摘要:[目的】探究饲料中添加黄连素(BBR)与聚β-羟基丁酸酯(PHB)对大口黑鲈(Micropterus salmoides)反季幼苗生长、免疫和肠道菌群的影响,为BBR与PHB在大口黑鲈配合饲料中的应用和大口黑鲈反季繁育提供理论依据。【方法】以大口黑鲈秋苗(体质量130.34±0.26 mg)为试验材料,以投喂基础饲料为对照(CK),B、P和MIX组分别投喂饲料B(1%o BBR)、饲料P(1%PHB)和饲料BP(1%BBR+1%PHB),BP5、BP7和BP14组分别以每5、7和14d的频率交替投喂饲料B与饲料P,养殖30 d,测定大口黑鲈生长性能、肝脏和肠道生化指标,分析肠道菌群结构及功能。【结果】在生长性能上,与CK相比,除P和MIX组外,其余处理组终末总体质量均显著提高(Plt;0.05,下同),饲料系数均显著降低;BP5、BP7和BP14组增重率、存活率均显著高于CK;BP7组终末总体质量、增重率和存活率均最高,饲料系数最低。在肝脏中,B、P、BP5、BP7、BP14和MIX组的ACP和AKP活性均显著高于CK,同时GOT和GPT活性均显著低于CK。在肠道中,与CK相比,其他处理组MDA和IL-6含量均显著降低,CAT和LZM含量均显著提高;BP5和BP7组TNF含量均显著低于CK。肠道菌群物种在门分类水平分布上,与CK相比,BP5、BP7和MIX组变形菌门相对丰度明显降低、厚壁菌门相对丰度明显增加,BP7组拟杆菌门相对丰度明显增加;在属分类水平分布上,与CK相比,BP5和BP7组无色杆菌属相对丰度明显降低,乳杆菌属相对丰度明显增加。BP7组微生物功能基因在代谢通路和环境信息处理通路显著富集。【结论】饲料中添加BBR可提高大口黑鲈秋苗的生长性能,BBR和PHB的添加或混合添加均能有效提高鱼体免疫能力及抗氧化能力、改善肝脏损伤和降低肠道炎症反应,以每7 d的频率交替投喂含BBR的饲料与含PHB的饲料效果最好;推测是由于BBR和PHB改变大口黑鲈肠道菌群结构及功能,改善了肝脏及肠道健康。

关键词:黄连素(BBR);聚β-羟基丁酸酯(PHB);大口黑鲈;生长;免疫;肠道菌群

中图分类号:S963.7文献标志码:A文章编号:2095-1191(2024)02-0378-10

Effects of berberine and poly-β-hydroxybutyrate on growth,immunity and intestinal flora of largemouth bass(Micropterus salmoides)

LIU Ya-rong¹,2,XIA Yun²,WEI Dong',ZHANG Kai²,XIE Jun²,WANG Guang-jun²,GONG Wang-bao²,YU Er-meng²*,SUN Jin-huil*

('College of Fisheries,TianjinAgricultural University,Tianjin 300384,China;²Pearl River Fisheries Research Insti-tute,Chinese Academy of Fishery Sciences/Key Laboratory of Tropicalamp;Subtropical Fishery Resource Application and Cultivation,Ministry of Agriculture and Rural Affairs,Guangzhou,Guangdong 510380,China)

Abstract:[Objective]To investigate the effects ofadding berberine(BBR)and poly-β-hydroxybutyrate(PHB)to feed on the growth,immunity and intestinal flora of largemouth bass(Micropteris salmoides)in the inverse-season fry. So as to provide theoretical basis for the application of BBR and PHB in the feed for largemouth bass and the inverse-season fry breeding of largemouth bass.[Method]Largemouth bass inverse-season fry(body mass 130.34±0.26 mg)were used as test materials,and fed basic feed as control(CK),feed B(1%BBR),feed P(1%PHB),feed BP(1%o BBR+1%PHB)in B,Pand MIX groups respectively,and BP5,BP7 and BP14 groups were fed with feed Band fed Palter-nately at the frequency of every 5,7 and 14 d.The largemouth bass was cultured for 30 d.The growth performance,liver andintestinal biochemical indexes were measured,and the intestinal flora structure and function were analyzed.[Result]In growth performance,compared with CK,the final total mass was significantly higher(Plt;0.05,the same below),and the feed coefficient was significantly decreased in all treatment groups exceptP and MIX groups;the weight gain rate and survival rate in the BP5,BP7 and BP14 groups were significantly higher than that in CK;the final total mass,survival rate and weight gain rate were the highest in BP7 group while the feed coefficient was the lowest.In the liver,ACP and AKP activitieswere significantly higher in the B,P,BP5,BP7,BP14 and MIX groups than in CK,while GOT and GPT activities were significantly lower than CK.In the intestine,compared with CK,the contents of MDA and IL-6 were sig-nificantly lower in other treatment groups,while the contents of CAT and LZM were significantly increased;the content of TNF in BP5 and BP7 groups was significantly lower than that in CK.At the phylum level,the relative abundance of Proteobacteria was decreased and that of Firmicuteswas increased in the BP5,BP7 and MIX groups,relative abundance of Bacteroidota in the BP7 group increased obviously compared with CK.At the genus level,compared with CK,therela-tive abundance of Achromobacter decreased greatly and that of Laclobacillas increased greatly in the BP5 and BP7groups.Microbial functional genes were significantly enriched in metabolic pathway and environmental information pro-cessing pathway in BP7 group.【Conclusion]Adding BBR to the feed can improve the growth performance of largemouth bass in autumn,and the addition or mixing of BBR and PHB can effectively improve the immunity and antioxidant ability of the fish,improve the liver damage,and reduce the intestinal inflammatory response,and the best effect is achieved by alternating the feeding of BBR-containing feeds with PHB-containing feeds at afrequency of eve-ry 7 d.It is assumed that BBR and PHB change the structure and function of largemouth bass intestinal flora and improve liver and intestinal health

Keywords:berberine(BBR);poly-β-hydroxybutyrate(PHB);largemouth bass(Micropterzs salmoides);growth;immunity;intestinal flora

Foundation items:Youth Project of National Natural Science Foundation ofChina(32002401);Guangdong Basic and Applied Basic Research Foundation(2020A1515110249)

0引言

【研究意义】近年来,随着社会经济发展及水产养殖技术的提升,大口黑鲈(Micropterus salmoides)逐渐成为国内淡水养殖的主要品种之一,养殖规模逐渐扩大,养殖产业遍布全国。2022年,全国大口黑鲈养殖产量超过70万t,逐步演变成我国“第五大家鱼”(贾松鹏等,2022)。为给市场提供充足稳定的苗种、提高利润,全国兴起大口黑鲈反季繁育热潮,在9—10月投放秋苗,养殖过冬,以在来年市场缺乏商品鱼时上市(崔庆奎等,2021)。但大口黑鲈是肉食性鱼类,对饲料中糖的耐受力低,人工饲养易出现严重的肝胆综合征,表现为持续高血糖、肝脏病变、生长减缓和饲料利用率降低等(胡斌等,2019);且近几年大口黑鲈细菌性、病毒性疾病暴发频繁,降低了鱼苗存活率,反季苗种一直处于供不应求状态。针对这种情况,过往研究主要关注大口黑鲈的营养需求及饲料配方,随着配合饲料研究的广泛开展,目前对大口黑鲈饲料的研究已转向饲料添加剂的开发,通过添加饲料添加剂,调控大口黑鲈机体代谢,调节肠道健康水平及机体免疫,以提高大口黑鲈反季幼苗的存活率。【前人研究进展】黄连素(BBR)又称盐酸小檗碱,是从黄连、黄柏等植物中提取的生物碱(Andola et al.,2010),具有多种重要功能。BBR能通过调节炎症相关信号通路减轻炎症反应,维持肠道健康稳定(Yan et al.,2012;Wang et al.,2017);前人研究发现,添加BBR可减缓团头鲂的肝胰腺脂肪沉积,减轻肝胰脏的氧化应激反应,增强其抗氧化能力,有效调节脂肪代谢,改善脂肪肝症状(Siow et al.,2011;Chen et al.,2016;陈丹红等,2018)。聚β-羟基丁酸酯(PHB)是聚羟基脂肪酸酯(PHA)的一种,是由微生物利用各种碳源发酵合成的脂肪族共聚酯,具有在自然界可生物降解的特征(Garcia-Depraect et al.,2022),由于无毒、可生物降解且不溶于水,其在水生动物的胃肠道中可被微生物降解为抗菌短链脂肪酸(SCFA)β-羟基丁酸或PHB低聚物,可降低肠道环境pH,有利于益生菌生长(De et al.,2010)。前人研究发现,饲料中添加适量PHB可提高中华绒螯蟹(刘玉等,2013)和凡纳滨对虾(张月等,2017)的免疫机能及抗病力;可增强梭鱼免疫相关酶及信号通路基因表达,提高抗氧化能力(Qiao et al.,2019);还能提高鱼类和哺乳动物的生长性能和存活率(Wang et al.,2019)。【本研究切入点】BBR和PHB能否联用并应用于大口黑鲈反季幼苗培育,尚未有相关的深入研究报道。【拟解决的关键问题】探究饲料中添加BBR与PHB对大口黑鲈反季幼苗生长、免疫和肠道菌群的影响,以大口黑鲈秋苗为试验材料,以投喂基础饲料为对照,各处理组分别投喂添加BBR的饲料、添加PHB的饲料、混合添加BBR和PHB的饲料及以每5、7和14 d的频率交替投喂含BBR的饲料与含PHB的饲料,测定大口黑鲈生长性能、肝脏和肠道生化指标,分析肠道菌群结构及功能,为BBR与PHB在大口黑鲈配合饲料中的应用和大口黑鲈反季繁育提供理论依据。

1材料与方法

1.1饲料配方

饲料原料购自河北铭逸饲料销售有限公司;PHB购自珠海麦得发生物科技股份有限公司,纯度≥90%,白色粉末状,无味;BBR购自北京索莱宝科技有限公司,含量≥98%,淡黄色,味苦。试验饲料配方及营养水平见表1和表2,以鱼粉、鸡架肉粉、大豆浓缩蛋白为主要蛋白源配制基础饲料C;在基础饲料C中添加1%BBR配制饲料B;在基础饲料C中添加1%PHB配制饲料P;在基础饲料C中添加1%PHB和1%BBR配制饲料BP。分别将各饲料的原料组分用立式搅拌机混合均匀,搅拌温度20~30℃,搅拌速率200~300 r/min,搅拌时间15~30 min。

1.2试验设计与饲养管理

试验用鱼为中国水产科学研究院珠江水产研究所培育的大口黑鲈品种优鲈三号,以当年人工孵化的同批次大口黑鲈幼苗为试验材料。于秋季在广东省广州市珠江水产研究所养殖基地进行养殖试验,选取规格一致、体格健壮的大口黑鲈幼苗(体质量130.34±0.26 mg)置于同池塘的21个2 m×2 m×2 m(10目)网箱中,每网箱300尾。设7个处理组,以投喂基础饲料C为对照(CK),B组投喂饲料B,P组投喂饲料P,BP5组、BP7组和BP14组分别以每5、7、14d的频率交替投喂饲料B与饲料P,MIX组投喂饲料BP;每组3个平行,养殖30 d。试验用水为池塘自 然水体,静水养殖,水温15~19℃,溶解氧为6.00~9.00 mg/L,总磷为0.19±0.07 mg/L,总氮为2.45±0.39 mg/L,NH₄*-N为0.23±0.06 mg/L,NO₂-N为0.52±0.08 mg/L,NO₃-N为0.56±0.12 mg/L,pH 7.2±0.8,自然光照。每天投喂2次(9:00和16:00),日投喂量为鱼体质量3%~5%,每次投喂前5 min停气,人工少量多次投喂,以确保投喂饲料被全部摄食。动物试验经中国水产科学研究院珠江水产研究所实验动物伦理委员会批准,批准号LAEC-PRFRI-2022-08-88。

1.3生长性能测定

养殖试验结束后,分别称量各网箱的大口黑鲈总体质量,根据公式计算增重率(WG)、饲料系数(FCR)、存活率(SR)。

WG(%)=(FBW-IBW)/IBW×100 """(1)

FCR=FI/(FBW-IBW) """(2)

SR(%)=FN/IN×100 """(3)

式中,FBW为终末总体质量(g);IBW体质量(g);FI为试验期间摄食量(g);FN数;IN为初始尾数。

1.4肝脏和肠道生化指标测定

养殖试验结束后,禁食24 h,用MS-222对大口黑鲈进行轻微麻醉,每网箱随机采集3尾鱼的肝脏样本和肠道样本,每组3个平行,液氮冷冻,-80℃保存备用。采用相应试剂盒(南京建成生物工程研究所)检测肝脏的谷草转氨酶(GOT)、谷丙转氨酶(GPT)、碱性磷酸酶(AKP)、酸性磷酸酶(ACP)和超氧化物歧化酶(SOD)活性,使用全波长酶标仪(Thermo Fisher Scientific,美国)进行检测;采用酶联免疫吸附测定试剂盒(上海酶联生物科技有限公司)测定大口黑鲈肠道过氧化氢酶(CAT)、肿瘤坏死因子(TNF)、白细胞介素-6(IF-6)、溶菌酶(LZM)、丙二醛(MDA)含量,使用全波长酶标仪(Thermo Fisher Scientific,美国)进行检测。

1.5肠道菌群分析

禁食与麻醉处理同1.4,每网箱采集10尾鱼的肠道内容物制成1个混合样,每组3个平行,置于冻存管中,-80℃保存备用。采用细菌DNA提取试剂盒(美国Omega Bio-Tek公司)提取细菌DNA。委托诺禾致源科技股份有限公司进行高通量测序。对大口黑鲈的肠道内容物16S rRNA序列V3~V4区进行PCR扩增,反应体系20.0μL:DNA模板5.0μL,2μmol/L正、反向引物(338F、806R)各2.50μL,2×Q5 High-Fidelity 2XMaster Mix 10.0μL。扩增程序:98℃预变性30 s;98℃10s,65℃30s,72℃30 s,10个循环;72℃延伸5 min。PCR产物与等体积1×加载缓冲液混合,以1.5%琼脂糖凝胶电泳分离,选取400~450 bp扩增子。PCR产物以等密度比混合,使用AxyPrep DNA凝胶回收试剂盒[爱思进生物技术(杭州)有限公司]纯化。切胶回收后,采用高通量测序平台Illumina Hiseq进行测序,对序列进行聚类,计算Chaol指数、ACE指数、Shannon指数、Simpson指数和覆盖度等Alpha多样性指数,并比较各处理组群落组成差异,对肠道菌群功能基因在KEGG信号通路富集情况进行分析。

1.6统计分析

采用SPSS 23.0对试验数据进行单因素方差分析(One-way ANOVA),结果以平均值±标准差表示,采用邓肯氏多重比较法检验各处理组间的差异显著性;使用GraphPad Prism 8.0.2和Origin 2019b作图。

2结果与分析

2.1 BBR和PHB对大口黑鲈幼苗生长性能的影响

如表3所示,与CK相比,除P和MIX组外,其余处理组终末总体质量均显著提高(Plt;0.05,下同),BP5、BP7和BP14组增重率均显著高于CK,其中BP5与BP7组终末总体质量和增重率均无显著差异(Pgt;0.05,下同),但BP7组显著高于其余处理组;与CK相比,除P和MIX组外,其余处理组饲料系数均显著降低;与CK相比,BP5、BP7和BP14组存活率均显著提高,B和P组存活率均与CK无显著差异。BP5与BP14组终末总体质量、增重率、饲料系数和存活率均无显著差异;在所有处理组中,BP7组终末总体质量、增重率和存活率均最高,饲料系数最低。结果表明,交替投喂含BBR的饲料与含PHB的饲料,效果优于单独投喂或投喂混合添加BBR和PHB的饲料。

2.2 BBR和PHB对大口黑鱸幼苗肝脏和肠道生化指标的影响

各处理组大口黑鲈幼苗肝脏生化指标如表4所示,B、P、BP5、BP7、BP14和MIX组大口黑鲈幼苗肝脏ACP和AKP活性均显著高于CK,其中BP7组显著高于其他处理组。除B和P组外,其余处理组SOD活性均显著高于CK。B、P、BP5、BP7、BP14和MIX组大口黑鲈幼苗肝脏GOT和GPT活性均显著低于CK,且BP7组显著低于B和P组。

各处理组大口黑鲈幼苗肠道生化指标如表5所示,与CK相比,其他处理组大口黑鲈幼苗肠道MDA和IL-6含量均显著降低;BP5和BP7组TNF含量均显著低于CK,MIX组TNF含量与CK无显著差异;BP7组MDA、IL-6和TNF含量均显著低于B、P和MIX组;与CK相比,其他处理组大口黑鲈幼苗肠道CAT和LZM含量均显著提高。

2.3 BBR和PHB对大口黑鱸幼苗肠道菌群的影响

不同处理组大口黑鲈幼苗肠道菌群Alpha多样性指数如表6所示,以Chaol指数、ACE指数、Shan-non指数、Simpson指数和覆盖度反映丰富度和均匀性,各处理组Alpha多样性指数均无显著差异。各处理组大口黑鲈幼苗肠道菌群偏最小二乘法判别分析(PLS-DA)结果如图1所示,CK和B组部分样本聚在一起,BP5和BP7菌群构成相近,MIX组样本与其他处理组样本分离,菌群构成与其他处理组差异较大。说明BBR与PHB混合添加对大口黑鲈幼苗肠道菌群构成影响较大,以每5d或每7 d的频率交替投喂含BBR的饲料与含PHB的饲料对肠道菌群的影响相似。

不同处理组大口黑鲈幼苗肠道菌群物种在门分类水平分布如图2所示,不同饲料投喂处理对大口黑鲈幼苗肠道菌群的结构产生影响,各处理组的优势菌门均为变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、放线菌门(Actinobacteriota)和拟杆菌门(Bacteroidota),但不同处理组的优势菌门相对丰度存在差异。与CK(变形菌门相对丰度90.50%、厚壁菌门相对丰度6.07%)相比,BP5、BP7和MIX组变形菌门相对丰度(66.20%、44.86%和62.06%)明显降低,但厚壁菌门相对丰度(28.50%、47.66%和19.44%)明显增加。与CK(拟杆菌门相对丰度0.93%)相比,其余处理组的拟杆菌门相对丰度增加,其中BP7组拟杆菌门相对丰度(4.98%)明显增加。

不同处理组大口黑鲈幼苗肠道菌群物种在属分类水平分布如图3所示,在属水平上,无色杆菌属(Achromobacter)和乳杆菌属(Lactobacillus)是各处理组的优势菌属。与CK(无色杆菌属相对丰度86.14%;乳杆菌属相对丰度2.34%)相比,BP5和BP7组无色杆菌属相对丰度(61.99%和43.30%)明显降低,但乳杆菌属相对丰度(18.22%和30.22%)明显增加。说明BBR和PHB添加剂的使用影响大口黑鲈秋苗肠道主要微生物群落构成,增加了乳杆菌属有益细菌在肠道的分布,含BBR的饲料与含PHB的饲料以每5d或每7d的频率交替投喂效果最好。

不同处理组大口黑鲈幼苗肠道菌群功能基因KEGG信号通路富集分析结果如图4所示,相较其他处理组,BP7组功能基因在新陈代谢和环境信息处理通路显著富集,推测BP7组大口黑鲈幼苗肠道菌群在宿主代谢和营养吸收中发挥重要作用。

3讨论

BBR是从黄连、黄柏等中药植物中提取出的单体化合物,Zhou等(2019)在团头鲂饲料中添加BBR,发现其生长性能显著提高;陈丹红(2020)研究发现,饲料中添加适量BBR能提高团头鲂的生长性能,降低其饲料系数;Doan等(2020)发现饲料中添加BBR对提高尼罗罗非鱼生长性能和饲料利用率及增强免疫力和抗病性具有重要作用;Ramezanzadeh等(2020)发现在虹鳟鱼饲料中添加BBR可提高其生长性能;刘海姿(2021)发现饲料中添加BBR可提高美洲鳗细幼鱼的生长性能;本研究结果表明,饲料中添加BBR显著提高大口黑鲈反季幼苗的终末总体质量,显著降低饲料系数,与上述前人研究结果相符。De Schryver等(2010)发现在海鲈幼鱼饲料中添加2%或5%PHB可提高其生长性能;张月等(2017)研究发现,饲料中添加适量PHB有利于增强凡纳滨对虾肝胰腺的消化和非特异性免疫能力;但本研究中,饲料中添加1%o PHB对大口黑鲈幼苗的生长性能无显著影响,推测与PHB的添加量、养殖对象的种类和体质量、养殖环境温度及饲料原料等有关。本研究中交替投喂的饲养方式获得较好效果,含BBR的饲料与含PHB的饲料以每7d的频率交替投喂效果最优,显著提高了大口黑鲈秋苗的生长性能,是较好的投喂策略。

大口黑鲈是一种肉食性鱼类,人工饲养过程中易出现严重的肝胆综合征,导致肝胆功能异常、生长减缓和死亡率上升(Amoah et al.,2008;朱志明等,2014)。SOD是一种氧化应激下细胞内源性防御系统所降解的超氧化物,与水产动物的免疫能力密切相关(贾丽娟等,2022)。ACP在机体吞噬细胞内发挥作用,对识别清除病原体、增强机体防御功能有重要影响;AKP在机体非特异性免疫中发挥重要作用(付腾等,2016);ACP和AKP活性的高低可反映机体免疫能力的强弱。GOT和GPT是广泛存在于动物线粒体中的重要氨基酸转氨酶(罗莉等,2003),其活性变化是反映是否出现肝脏损伤的主要指标,肝脏受损时GOT和GPT活性迅速升高(徐韬等,2016)。本研究中,BBR和PHB添加剂的使用提高了大口黑鲈幼苗肝脏ACP、AKP和SOD活性,同时降低了GOT和GPT活性,说明饲料中添加BBR和PHB能有效提高机体免疫能力及抗氧化能力、改善肝脏损伤。

肠道不仅是机体消化吸收的重要场所,也是重要的防御屏障。肠道健康对鱼体生理功能的正常运行及肠道微生物构成等有重要影响(Liu et al.,2021)。MDA含量通常可反映机体氧化应激和抗氧化状态,自由基含量增加会导致MDA过量产生(Gawel et al.,2004)。LZM是生物体内重要的非特异性免疫因子(Mori et al.,1989)。IL-6和TNF作为促炎因子参与一系列炎症反应,IL-6对维持机体平衡及调节机体免疫反应和炎症有重要影响,TNF含量的高低可反映机体的肥胖程度,糖尿病患者常出现TNF含量升高(Tzanavari et al.,2010;Mihara et al.,2012;汪川和赵雯,2018;Spencer et al.,2019)。本研究中,BBR和PHB添加剂的使用对大口黑鲈幼苗肠道MDA、CAT、LZM和IL-6含量有显著影响,MDA和IL-6含量减少,LZM含量增加,表明饲料中添加BBR和PHB有效降低了肠道炎症反应;交替使用BBR和PHB的大口黑鲈幼苗肠道TNF含量降低,表明其能调节脂肪代谢,降低肠道应激和炎症反应、提高免疫水平,促进肠道健康,增强对营养物质的吸收利用,且含BBR的饲料与含PHB的饲料以每7 d的频率交替投喂效果最好。

肠道菌群的稳定是肠道健康的关键,其在调节肠道健康及参与机体营养代谢中具有重要作用(孙悦等,2021)。肠道菌群失调会导致宿主产生多种疾病(黄筱钧等,2022)。本研究中,大口黑鲈幼苗肠道菌群PLS-DA结果显示CK和B组部分样本聚在一起,BP5和BP7菌群构成相近,MIX组样本与其他处理组样本分离,菌群构成与其他处理组差异较大,说明BBR与PHB混合添加对大口黑鲈秋苗肠道菌群构成影响较大。变形菌门、厚壁菌门、放线菌门、拟杆菌门是本研究中大口黑鲈肠道菌群的优势菌门,与其他鱼类肠道菌群构成的研究结果一致(何娇娇等,2018;兰鲲鹏等,2022;付豪等,2023)。相关研究表明,变形菌门相对丰度的增加反映了肠道菌群的失衡,提示肠道存在炎症反应(王腊梅,2016;郭仕辉等,2022;贾丽娟等,2023)。本研究中,投喂混合添加BBR和PHB的饲料、交替投喂含BBR的饲料与含PHB的饲料均降低了变形菌门相对丰度,推测饲料中添加BBR和PHB可促进大口黑鲈反季幼苗机体健康。厚壁菌门相对丰度的升高表明机体对蛋白质和碳水化合物的吸收增多(金娜等,2019),拟杆菌门是参与多糖代谢、胆固醇代谢和碳水化合物发酵的重要菌群(Thomas et al.,2011)。以每7d的频率交替投喂含BBR的饲料与含PHB的饲料,大口黑鲈幼苗肠道中厚壁菌门和拟杆菌门相对丰度明显增加,说明该投喂策略能有效改善大口黑鲈幼苗肥胖,与肠道TNF含量降低结果一致。乳酸菌能预防肠道感染,乳杆菌属细菌的摄入能改善肠道健康(van Hylckama Vlieg et al.,2006);无色杆菌属中的木糖氧化无色杆菌(A.xylosoxidans)会导致囊肿性纤维化并损伤肠道(Spilker et al.,2013)。本研究中,BP5和BP7组无色杆菌属相对丰度的降低和乳杆菌属相对丰度的增加均表明,BBR和PHB添加剂的使用降低了肠道菌群中有害细菌的相对丰度,增加了有益细菌在肠道的分布,有效改善了大口黑鲈秋苗肠道微生物群落构成,含BBR的饲料与含PHB的饲料以每5d或每7 d的频率交替投喂效果最好。KEGG信号通路富集分析结果显示,BP7组功能基因在新陈代谢和环境信息处理通路显著富集,推测BP7组大口黑鲈幼苗肠道菌群在宿主代谢和营养吸收中发挥重要作用。

4结论

饲料中添加BBR可提高大口黑鲈秋苗的生长性能,BBR和PHB的添加或混合添加均能有效提高鱼体免疫能力及抗氧化能力、改善肝脏损伤和降低肠道炎症反应,以每7d的频率交替投喂含BBR的饲料与含PHB的饲料效果最好;推测是由于BBR和PHB改变大口黑鲈肠道菌群结构及功能,改善了肝脏及肠道健康。

参考文献(References):

陈丹红,陈青青,刘文斌,张定东,徐维娜.2018.团头鲂GPR43基因克隆、组织分布及黄连素对其mRNA表达量的影响[J].水生生物学报,42(4):663-672.[Chen DH,Chen QQ,Liu WB,Zhang DD,Xu WN.2018.Gene cloning of GPR43 and its distribution in the tissue of blunt snout bream and the effect of berberine on its mRNA expression[J].Acta Hydrobiologica Sinica,42(4):663-672.]doi:10.7541/2018.082.

陈丹红.2020.黄连素投喂模式对摄食高能饲料的团头鲂生长和免疫机能的影响[D].南京:南京农业大学.[Chen DH.2020.Effects of berberine feeding mode on the growth and immune performance in blunt snout bream"(Megalobrama amblycephala)fed with high-energy diet"[D].Nanjing:Nanjing Agricultural University.]doi:10."27244/d.cnki.gnjnu.2018.000557.

崔庆奎,沈志刚,田宇,齐飘飘,黄红红,刘洋,陈敏,于跃,樊启学.2021.大口黑鲈的卵巢发育周年变化及反季节繁殖研究[J].水生生物学报,45(1):76-88.[CuiQK,Shen

Z G,Tian Y,Qi PP,Huang HH,Liu Y,Chen M,Yu Y,Fan QX.2021.Study on the annual development of ovary and out-of-season spawning in largemouth bass Microp-terzs salmoides[J].Acta Hydrobiologica Sinica,45(1):76-88.]doi:10.7541/2021.2020.151.

付豪,梁艺馨,牟希东,刘超,杨叶欣,刘奕,宋红梅.2023.发酵南极磷虾粉对锦鲤生长性能、血清生化指标、肠道结构及菌群的影响[J].广东海洋大学学报,43(5):34-42.[Fu H,Liang YX,Mu XD,Liu C,Yang YX,Liu Y,Song HM.2023.Effects of fermented Antarctic krill meal on growthperformance,serum biochemical indices and intes-tinal microbiota of koi carp(Cyprims carpio)[J].Journal of Guangdong Ocean University,43(5):34-42.]doi:103969/j.issn.1673-9159.2023.05.005.

付腾,宋沙沙,马红玲,王博,陈新祥,郭志勋.2016.硝态氮对凡纳滨对虾血清免疫相关酶活性的影响[J].南方水产科学,12(2):44-50.[Fu T,Song SS,Ma HL,Wang B,Chen XX,Guo ZX.2016.Influence of nitrate nirogen on immune factors in serum of Pacific white shrimp(Litope-naews vannamei)[J].South China Fisheries Science,12(2):44-50.]doi:10.3969/j.issn.2095-0780.2016.02.007.

郭仕辉,余永涛,万佳宏,毛彦妮,张浩东,张津慎,田新岳,赵清梅.2022.变形菌门与哺乳动物结肠肠道菌群失调相关研究进展[J].中国微生态学杂志,34(4):479-484.[Guo SH,Yu YT,Wan JH,Mao YN,Zhang HD,Zhang JS,Tian XY,ZhaoQ M.2022.Progress in research on the relationship between Proteobacteria and the imbalance of mammalian colonic intestinal flora[J].Chinese Journal of Microecology,34(4):479-484.]doi:10.13381j.cnki.cjm.202204021.

何娇娇,王萍,冯建,娄宇栋.2018.发酵豆粕对大黄鱼生长、肠道结构及肠道微生物菌群的研究[J].水生生物学报,42(5):919-928.[HeJ J,Wang P,FengJ,Lou YD.2018.Effects of fermented soybean meal on the growth and intes-tinal histology and microbiota of juvenile large yellow croaker Larimichthys crocea[J].Acta Hydrobiologica Sini-ca,42(5):919-928.]doi:10.7541/2018.113.

胡斌,宋理平,冒树泉,许鹏.2019.饲料中添加4种中草药制剂对大口黑鲈幼鱼生长和抗氧化能力的影响[J].广东海洋大学学报,39(4):101-107.[Hu B,SongLP,Mao SQ,Xu P.2019.Effects of four Chinese herbal preparations on growth performance and antioxidant activity in juvenile"Micropterus salmoides[J].Journal of Guangdong Ocean"University,39(4):101-107.]doi:10.3969/j.issn.1673-9159.2019.04.015.

黄筱钧,杨锦,雷亚琪美,曾志杰,金朝晖.2022.以肠道菌群为靶点的新型辅助降压模式研究进展[J].中国全科医学,25(18):2297-2302.[Huang XJ,Yang J,LeiYQM,Zeng ZJ,JinZ H.2022.New research progress of anew auxiliary antihypertensive model targeting intestinal flora[J].Chinese General Practice,25(18):2297-2302.]doi:10.12114/j.issn.1007-9572.2022.02.023.

贾丽娟,王广军,夏耘,张凯,高书伟,李奕潮,高岩.2022.不同地区稻田养殖小龙虾生理代谢、肌肉品质及营养价值比较[J].甘肃农业大学学报,57(1):188-197.[Jia LJ,Wang GJ,Xia Y,Zhang K,Gao SW,Li YC,Gao Y.2022.Comparison of physiological metabolism,muscle quality and nutritional value of Procambarus clarkii culti-vated in paddy fields in different areas[J].Journal of Gansu Agricultural University,57(1):188-197.]doi:10.13432j.cnki.jgsau.2022.01.023.

贾丽娟,王广军,夏耘,张凯,谢骏,郁二蒙,李志斐,龚望宝,田晶晶.2023.不同地区稻虾综合种养系统的微生物群落结构分析[J].水产学报,47(6):73-84.[Jia LJ,Wang GJ,Xia Y,ZhangK,Xie J,Yu EM,LiZF,GongWB,Tian JJ.2023.Analysis of microbial community structure in rice-shrimp integrated culture system of three different areas[J].Journal of Fisheries of China,47(6):73-84.]doi:10.11964/jfc.20210512821.

贾松鹏,王磊,徐双阳,王误冉,程涛,王永,梁中军,尚勤磊,乔志刚,李学军.2022.陆基推水集装箱养殖大口黑鲈生长特点分析[J].水产科学,41(4):622-628.[Jia SP,WangL,Xu SY,Wang HR,Cheng T,Wang Y,Liang ZJ,ShangQL,QiaoZG,LiXJ.2022.Growth characteristics"of largemouhbassMicropteras salmoides cultured in land-based container with recycling water[J].Fisheries Science,41(4):622-628.]doi:10.16378/j.cnki.1003-1111.20269.

金娜,邹闻书,高倩,陈长增,刘凤华.2019.枸芪多糖对育肥猪肠道菌群多样性及组成的影响[J].动物营养学报,31(9):4033-4043.[Jin N,Zou WS,Gao Q,Chen CZ,Liu FH.2019.Effects of Gou-Qi polysaccharides on inestinal microbial diversity and composition of growing-finishing pigs[J].Chinese Journal ofAnimal Nutrition,31(9):4033-4043.]doi:10.3969/j.issn.1006-267x.2019.09.015

兰鲲鹏,吴光德,王琚,陈旭,王芸,周传朋,林黑着,马振华.2022.饲料中添加菊粉对卵形鲳参幼鱼存活、生长和肠道菌群的影响[J].南方水产科学,18(5):55-65.[Lan KP,Wu GD,Wang J,Chen X,Wang Y,Zhou CP,Lin HZ,Ma ZH.2022.Effects of dietary supplementation of inulin on survival,growth and intestinal microbiota ofjuvenile golden pompano(Trachinotus ovatus)[J].South China Fisheries Science,18(5):55-65.]doi:10.12131/20220082.

刘海姿.2021.饲料中添加黄连素对美洲鳗幼鱼生长、肠道免疫及代谢的影响[D].厦门:集美大学.[Liu HZ.2021.Effects of dieary berberine supplementation on growth,intestinal immunity and metabolism of juvenile American eelAnguilla rostrata[D].Xiamen:Jimei University.]doi:10.27720/d.cnki.gjmdx.2021.000206.

刘玉,隋丽英,邓元告,常国亮,张文亮.2013.聚β-羟基丁酸酯(PHB)对中华绒螯蟹(Eriocheir simensis)幼蟹生长和肝胰腺酶活力的影响[J].海洋与湖沼,44(5):1333-1338.[Liu Y,Sui LY,Deng YG,Chang GL,Zhang WL.2013.Effect of poly-β-hydroxybutyrate on growth and hepato"pancreatic enzyme activities of Eriocheir sinensis juveniles"[J].Oceanologia et Limnologia Sinica,44(5):1333-1338.]doi:10.11693/hyhz201305031031.

罗莉,李英文,林仕梅,牟达莉.2003.半胱胺对草鱼酮体代谢、转氨酶和碱性磷酸酶活性的影响[J].饲料广角,(16):33-35.[Luo L,LiYW,Lin SM,Mu DL.2003.The effect of cysteamine on ketobodies metabolism,transami-nase,alkaline phosphatase activity of grasscarp[J].Feed China,(16):33-35.]doi:10.3969/j.issn.1002-8358.200316.015.

孙悦,王广军,张凯,夏耘,孙金辉,谢骏,郁二蒙,李志斐,田晶晶.2021.稻田环境对鲤血清生化指标、肠道组织形态及细菌群落结构的影响[J].上海海洋大学学报,30(4):601-612.[Sun Y,Wang GJ,Zhang K,Xia Y,Sun JH,Xie J,Yu EM,Li ZF,Tian JJ.2021.Effects of paddy field environment on serum biochemical indexes,intestinal tissue morphology and bacterial community structure of common carp(Cyprinus carpio)[J].Journal of Shanghai Ocean University,30(4):601-612.]doi:10.12024/jsou.20200302976.

汪川,赵雯.2018.观察糖尿病合并高血压患者血清促炎细胞因子(IL-6、TNF-α)和抗炎细胞因子(IL-10)水平变化[J].糖尿病新世界,21(14):57-58.[Wang C,Zhao W.2018.Observation of serum proinflammatory cytokines(IL-6,TNF-a)in patients wih diabetes and hypertension changes in anti-inflammatory cytokine(IL-10)levels[J].Diabetes New World,21(14):57-58.]doi:10.16658/j.cnki.1672-4062.2018.14.057.

王腊梅.2016.HAART治疗AIDS患者肠道微生物群落结构和机体免疫的研究[D].昆明:昆明理工大学.[Wang LM.2016.The composition of intestinal microbita and immune system in AIDS patients on long-term highly active antiretroviral therapy[D].Kunming:Kunming Uni-versity of Science and Technology.]

徐韬,彭祥和,陈拥军,林仕梅,黄先智,李云.2016.发酵桑叶替代鱼粉对大口黑鲈生长、脂质代谢与抗氧化能力的影响[J].水产学报,40(9):1408-1415.[Xu T,Peng XH,Chen YJ,Lin SM,Huang XZ,Li Y.2016.Effects of replacing fish meal with fermented mulberry leaves on the growth,lipid metabolism and antioxidant capacity in large-mouth bass(Micropterzs salmoides)[J].Journal ofFishe-ries of China,40(9):1408-1415.]doi:10.11964/jfc.20150609909.

张月,段亚飞,董宏标,张家松.2017.聚β-羟基丁酸酯对凡纳滨对虾肝胰腺免疫和消化指标的影响[J].南方水产科学,13(5):78-84.[Zhang Y,Duan YF,Dong HB,Zhang JS.2017.Effects of poly-β-hydroxybutyrate(PHB)on immuneand digestive indicators in hepatopancreas of Lito-penaeis vanmamei[J].South China Fisheries Science,13(5):78-84.]doi:10.3969/j.issn.2095-0780.2017.05.011.

朱志明,朱旺明,蓝汉冰.2014.加州鲈(Micropterus salmoi-des)生物学特性和营养需求研究进展[J].饲料工业,35(16):31-36.[Zhu ZM,Zhu WM,Lan HB.2014.The biological characteristicsand nutritional requirement of"largemouth bass(Micropterus salmoides)[J].Feed Indus-try,35(16):31-36.]doi:10.13302/j.cnki.fi.2014.16.008

Amoah A,Coyle SD,WebsterC D,DurborowR M,Bright L A,Tidwell JH.2008.Effects of graded levels of carbohy- drate on growth and survival of largemouth bass,Microp- terus salmoides[J].Journal of the World Aquaculture Socie- ty,39(3):397-405.doi:10.1111/j.1749-7345.2008.00168.x Andola HC,Gaira KS,Rawal RS,Rawat MS,Bhatt ID.2010.Habitat-dependent variations in berberine contentof"Berberis asiatica Roxb.ex.DC.in Kumaon,western"Himalaya[J].Chemistryamp;Biodiversity,7(2):415-420.doi:10.1002/cbdv.200900041.

Chen QQ,Liu WB,Zhou M,DaiYJ,Xu C,Tian HY,Xu WN.2016.Effects of berberine on the growth and immune performance in response to ammonia stress and high-fat"dietary in blunt snout bream Megalobrama amblycephala[J].Fishamp;Shellfish Immunology,55:165-172.doi:10.1016/j.fsi.2016.05.023

De Schryver P,Sinha AK,Kunwar PS,Baruah K,Verstraete W,Boon N,De Boeck G,Bossier P.2010.Poly-β-hydroxy-butyrate(PHB)increases growth performance and intesti-nal bacterial range-weighted richness in juvenile European sea bass,Dicentrarchus labrax[J].Applied Microbiology and Biotechnology,86(5):1535-1541.doi:10.1007/s00253-009-2414-9.

Doan HV,HoseinifarSH,Jaturasitha S,Dawood MAO,Hari-krishnan R.2020.Theeffects of berberine powder supple mentation on growth performance,skin mucus immune response,serum immunity,and disease resistance of Nile"tilapia(Oreochromis niloticus)fingerlings[J].Aquaculture,"520:734927.doi:10.1016/j.aquaculture.2020.734927.

Garcia-Depraect O,Lebrero R,Rodriguez-Vega S,Bordel S,"Santos-BeneitF,Martinez-MendozaLJ,AragãoBömer R,"Börner T,Munoz R.2022.Biodegradation ofbioplastics under aerobic and anaerobic aqueous conditions:Kinetics,carbon fate andparticle size effect[J].Bioresource Tech-nology,344:126265.doi:10.1016/j.biortech.2021.126265.

Gawel S,Wardas M,Niedworok E,Wardas P.2004.Malondial-"dehyde(MDA)as alipid peroxidation marker[J].Wiado-mosci Lekarskie,57(9-10):453-455.

LiuH S,LiX,Lei HJ,Li D,Chen HX,Schlenk D,Yan B,Luo YJ,XieL T.2021.Dietary seleno-z-methionine alters the microbial communities and causes damage in the gas trointestinal tract of Japanese medaka Oryzias latipes[J]Environmental Scienceamp;Technology,55(24):16515-16525.doi:10.1021/acs.est.1c04533.

Mihara M,Hashizume M,Yoshida H,Suzuki M,Shiina M.2012.IL-6/IL-6 receptor system andits role in physiologi cal and pathological conditions[J].Clinical Science,122(4):143-159.doi:10.1042/CS20110340.

Mori K,Nakanishi T,Suzuki T,Oohara I.1989.Defense mechanisms in invertebrates and fish[J].Tanpakushitsu Kakusan Koso,34(3):214-223.

QiaoG,SunQR,Zhang MM,Xu C,Lv TL,QiZT,Yang WP,Li Q.2019.Antioxidant system of soiny mullet(Liza"haematocheila)is responsive to dietary poly-β-hydroxybu-tyrate(PHB)supplementation based on immune-related enzyme activity and de novo transcriptome analysis[J].Fishamp;Shellfish Immunology,95:314-327.doi:10.1016j.fsi.2019.10.042.

Ramezanzadeh S,Abedian Kenari A,Esmaeili N,Rombenso A.2020.Effects of different forms of barberry root(Berberis vulgaris)on growth performance,muscle fatty acids pro-file,whole-body composition,and digestive enzymes of rainbow trout(Oncorhynchus mykiss)[J].Journal of the World Aquaculture Society,52:284-302.doi:10.1111jwas.12722.

Siow YL,Sarna L,O K.2011.Redox regulation in health and disease—Therapeutic potential of berberine[J].Food Research International,44(8):2409-2417.doi:10.1016/j.foodres.2010.12.038.

Spencer S,Köstel Bal S,Egner W,Lango Allen H,Raza SI,Ma CA,Gürel M,Zhang Y,Sun G,Sabroe RA,Greene"D,Rae W,Shahin T,KaniaK,ArdyRC,Thian M,Staples E,Pecchia-Bekkum A,Worrall WPM,StephensJ,Brown M,Tuna S,York M,Shackley F,Kerrin D,Sargur R,Con-dliffe A,Tipu HN,Kuehn HS,Rosenzweig SD,TurroE,Tavaré S,Thrasher AJ,Jodrell DI,Smith KG C,Boztug"K,Milner JD,Thaventhiran JED.2019.Loss of the inter-leukin-6 receptor causes immunodeficiency,atopy,and abnormal inflammatory responses[J].Journal of Experi-mental Medicine,216(9):1986-1998.doi:10.1084/jem.20190344.

Spilker T,Vandamme P,Lipuma JJ.2013.Identification and distribution of Achromobacler species in cystic fibrosis[J]Journal of Cystic Fibrosis,12(3):298-301.doi:10.1016j.jcf.2012.10.002

Thomas F,Hehemann JH,Rebuffet E,Czjzek M,Michel G.2011.Environmental and gutbacteroidetes:The food con-nection[J].Frontiers in Microbiology,2:93.doi:10.3389/fmicb.2011.00093.

Tzanavari T,GiannogonasP,Karalis KP.2010.TNF-alpha and obesity[M]/Kollias G,Sfikakis PP.TNF pathophysio-logy:Molecular and cellular mechanisms.Basel:Karger:145-156.doi:10.1159/000289203.

van Hylckama Vlieg JE,Rademaker JL,Bachmann H,Mole-naar D,KellyWJ,Siezen RJ.2006.Natural diversity and"adaptive responses of Lactococcus lactis[J].Current Opi-nion in Biotechnology,17(2):183-190.doi:10.1016/j.cop-bio.2006.02.007.

Wang X,Jiang XR,Wu FQ,Ma YM,Che XM,Chen XY,Liu P,Zhang WB,Ma X,Chen GQ.2019.Microbial poly-3-hydroxybutyrate(PHB)as afeedadditive for fishes and piglets[J].Biotechnology Journal,14(12):e1900132.doi:10.1002/biot.201900132.

Wang YX,Liu L,Zeng QX,FanTY,Jiang JD,Deng HB,Song DQ.2017.Synthesis and identification of novel ber-berine derivatives as potent inhibitors against TNF-α-induced NF-kB activation[J].Molecules,22(8):1257.doi:10.3390/molecules22081257.

YanF,Wang LH,ShiY,Cao HW,Liu LP,WashingtonMK,Chaturvedi R,IsraelDA,Cao HL,Wang BM,Peek RM Jr,Wilson KT,Polk DB.2012.Berberine pomotes reco-very of colitis and inhibits inflammatoryresponses in colonic macrophages and epithelial cells in DSS-treated mice[J].American Journal of Physiology-Gastrointestinal and Liver Physiology,302(5):G504-G514.doi:10.1152/ajpgi.00312.2011.Zhou WH,Rahimnejad S,Lu KL,Wang LN,Liu WB.2019

Effects of berberine on growth,liver histology,and expres-sion of lipid-related genesin blunt snout beam(Megalo-brama amblycephala)fed high-fat diets[J].Fish Physio-logy and Biochemistry,45(1):83-91.doi:10.1007/s10695-018-0536-7.

(责任编辑 刘可丹)

猜你喜欢
大口菌门菌群
大口黑鲈
垂钓(2023年11期)2024-01-21 16:07:04
“云雀”还是“猫头鹰”可能取决于肠道菌群
中老年保健(2022年2期)2022-08-24 03:20:50
鸡内金打粉 让孩子大口大口地吃饭
基层中医药(2021年6期)2021-11-02 05:46:10
“水土不服”和肠道菌群
科学(2020年4期)2020-11-26 08:27:06
野生树鼩与人工饲养树鼩消化道不同部位微生物组成的比较研究
饥饿与重摄食对河蟹肠道菌群结构的影响
昆虫体内微生物多样性的影响因素研究进展
妊娠期糖尿病肠道菌群变化及临床价值分析
大口小口话水果
肉牛剩余采食量与瘤胃微生物菌群关系