覃慧婷 康恒 付帆 薛佩佩 曹晓燕
摘要:角鲨烯是一种含有6个异戊二烯的萜类化合物,广泛存在于动物、植物和微生物体中,因其抗肿瘤、抗氧化、抗炎和调节脂质代谢等生物活性而被广泛应用于医药、食品和畜牧业等领域。文章综述了近年来有关角鲨烯来源、生物活性,及其在医药、食品、畜牧业等领域应用的相关研究进展,并展望了利用生物技术开发和生产非动物性角鲨烯的广阔前景,以期为角鲨烯的研究与开发提供参考。
关键词:角鲨烯;来源;生物活性;应用
中图分类号:Q541 文献标志码:A DOI:10.16465/j.gste.cn431252ts.20240121
Research progress on the source and bioactivity of squalene
Qin Huiting1, Kang Heng1, Fu Fan1, Xue Peipei2, Cao Xiaoyan1
(1. National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xian, Shaanxi 710119; 2. Xian Shangdan Health Management Co., Ltd., Xian, Shaanxi 710077)
Abstract: Squalene is a terpenoid compound containing six isoprene compounds, widely present in animals, plants, and microorganisms. It is widely used in fields such as medicine, food, and animal husbandry due to its biological activities such as anti-tumor, antioxidant, anti-inflammatory, and lipid metabolism regulation. The article reviews the research progress on the sources, biological activities, and applications of squalene in fields such as medicine, food, and animal husbandry in recent years, and looks forward to the broad prospects of using biotechnology to develop and produce non animal squalene for the research and development of squalene.
Key words: squalene; source; bioactivity; application
角鲨烯是一种含有6个异戊二烯的天然有机萜类化合物,分子式为C30H50,其3D结构如图1所示。角鲨烯普遍存在于动物、植物、微生物等多种生物体内,是人体内维生素D、胆固醇和类固醇激素等各种重要生物活性分子合成的前体物质。迄今为止,角鲨烯已被证明具有多种生物活性,被广泛应用于医疗、制药、食品、化妆品和畜牧业等领域。2019年角鲨烯市场总值1.4亿美元,预计在2024年增长至2.4亿美元,年均复合增长率为7.8%[1]。本文综述了角鲨烯的来源、生物活性和相关应用,以期为角鲨烯的研究与开发提供参考。
1 角鲨烯来源
1.1 动物体
角鲨烯主要来源于鲨鱼肝油(其中角鲨烯含量高达95%),而鲨鱼肝油占深海鲨鱼肝脏质量的83%以上[2]。一些淡水鱼的肌肉和内脏脂肪中也含有微量角鲨烯,但其含量远低于深海鲨鱼[3]。因此,每年都有大量的深海鲨鱼被捕杀,以满足不断增长的角鲨烯需求,这严重危害了海洋生态环境和生物多样性。所以寻找更合适的角鲨烯来源替代物具有重要意义。
1.2 植物体
已有许多植物和植物油被报道含有角鲨烯,如苋菜籽、橄榄油、南瓜籽油、灰毛豆油和茶树叶片。其中,苋菜(Amaranthus tailtus L.)种子的角鲨烯含量最高[4-5]。对苋菜籽进行热处理(爆裂)后再榨油可以进一步增加苋菜籽油中角鲨烯的含量,以苋菜籽生粒和爆裂粒榨取的苋菜籽油中角鲨烯含量分别为7.66%和8.12%[4]。此外,以热处理(爆裂)苋菜籽破碎后分离出的麸皮组分为榨油原料也能够增加苋菜籽油中角鲨烯的含量,从麸皮组分中榨取的苋菜籽油角鲨烯含量高达14.38 g/100 g[5]。
在食用植物油中,橄榄油和南瓜籽油中也被报道含有角鲨烯,橄榄油的角鲨烯含量达0.591~0.83 g/100 g[6-7],其中南瓜籽油的角鲨烯含量达0.444 6 g/100 g[8]。
灰毛豆(Tephrosia apollinea)是一种富含黄酮类化合物的豆科植物,原产于亚洲西南部和非洲东北部,灰毛豆种子油中角鲨烯含量可达1.103 8 g/100 g[9]。
角鲨烯还被证明存在于绿茶(Camellia sinensis)叶片中[10]。茶树叶片中角鲨烯含量随着茶树叶片成熟度的增加而增加,老叶的正己烷提取物中角鲨烯浓度比嫩叶正己烷提取物中大得多,达2.92 g/100 g[11]。因此,在制茶过程中未被利用的茶树老叶和修剪后的凋落叶片,可用于提取天然角鲨烯,从而提高茶树产业的附加值。
1.3 微生物
微藻、细菌和酵母等微生物体内都可以合成角鲨烯,而且微生物具有生长速度快和代谢水平高的特点,利用微生物发酵生产角鲨烯成为当前的研究热点。
微藻细胞内具有合成角鲨烯的天然合成途径,是一种有潜力且可持续的角鲨烯来源。在培养基中施加特比萘芬可以提高衣藻(Chlamydomonas)中角鲨烯含量[12]。提取角鲨烯后残余的微藻生物质含有较高含量的碳水化合物和蛋白质,可以用于生产生物汽油、沼气和动物饲料[13-14]。
除微藻外,酵母(Saccharomyces cerevisiae)因其在工程生产中的安全性、内在甲羟戊酸(MVA)途径(图2)的稳定性和遗传操作的简易性,成为角鲨烯生产的主要候选来源。ERG1(编码角鲨烯环氧酶)和ERG11(编码羊毛甾醇14-α-去甲基化酶)是酵母细胞中限制角鲨烯积累的关键酶基因,利用大肠杆菌mar操纵子的顺式作用元件mar O设计的工程启动子PERG1(M5)或PERG11(M3)下调酵母ERG1和ERG11的表达,可以将角鲨烯生物合成量提高4.9倍[15]。
由于酵母细胞线粒体可以提供充足的乙酰辅酶A和氧化还原当量,利用酵母线粒体合成角鲨烯是一种有前途的方法。然而,MVA途径的磷酸化中间体(尤其是甲羟戊酸-5-P和甲羟戊酸-5-PP)会转化为ATP类似物,抑制氧化呼吸等ATP相关的生化反应,导致酵母细胞生长状态不佳,这显著削弱了利用线粒体合成角鲨烯的潜在优势。据此,研究人员提出了胞质工程和线粒体工程的组合策略,即在线粒体中引入从乙酰辅酶A到甲羟戊酸的部分MVA途径,在细胞质中增加甲羟戊酸的合成,该策略成功展示了对角鲨烯生产的叠加效应,将培养物中角鲨烯产量提高到了21.1 g/L[16]。
产油酵母解脂雅罗酵母(Yarrowia lipolytica)已被改造为工程菌并应用于角鲨烯的工业化生产,通过优化乙酸盐、柠檬酸盐和特比萘芬的添加浓度,在工程菌SQ-1的培养产物中角鲨烯含量达731.18 mg/L[17]。
沼泽红假单胞菌(Rhodopseudomonas palustris)已被证明具有生产角鲨烯的潜力,在阻断类胡萝卜素合成途径和过表达角鲨烯合成途径限速酶的情况下,角鲨烯产量达到23.3 mg/g DCW(细胞干重),和原始菌株相比提高约178倍[18]。
目前,微生物来源的角鲨烯产量还不足以满足全球对角鲨烯的需求,无法替代鲨鱼肝油来源的角鲨烯。为了提高微生物源角鲨烯产量,还需要进行更加广泛和深入的研究以获得高产、遗传稳定、适合工业化生产的微生物菌株以及寻找廉价的生产原料。
2 角鲨烯的生物活性
2.1 抗肿瘤
角鲨烯可以辅助治疗多种癌症,能够保护正常细胞免受化疗药物毒性,促进化疗药物对肿瘤细胞的毒害[19]。
角鲨烯具有很好的抗胃癌活性,可以通过促进肿瘤细胞DNA损伤、改变线粒体膜电位、增加活性氧(ROS)以及增大脂质过氧化水平介导肿瘤细胞凋亡,抑制人胃腺癌(AGS)细胞系的细胞增殖[20]。
顺铂是一种抗癌药物,但其具有肾毒性,使得临床使用受到很大限制[21]。研究人员发现,角鲨烯可以通过其抗氧化作用调节氧化还原系统的平衡,激活Akt/mTOR信号通路改善顺铂诱导的肾脏组织病理学损伤[22]。而且,角鲨烯本身就具有很强的抗肾细胞癌(RCC)活性,它能够靶向缺氧诱导因子(HIF)信号通路,并影响多种细胞过程,是一种有前途的RCC治疗药物[23]。
在发达国家,乳腺癌是女性最常见的死亡原因之一[24]。角鲨烯能有效抑制人乳腺上皮细胞的异常过度增殖,还可以降低ROS水平,保护乳腺上皮细胞免受氧化DNA损伤[25]。角鲨烯和羟基酪醇在转移性乳腺癌细胞中联合使用时,能够抑制癌细胞增殖,促进癌细胞凋亡和DNA损伤[26]。
2.2 抗氧化
氧化应激通常表现为细胞内ROS的过量生成与抗氧化能力降低,在脂肪性肝炎中起负面作用[27]。角鲨烯能够诱导脂质代谢相关蛋白的表达,降低肝脏脂肪含量,减轻肝脏中氧化应激造成的损伤[28]。在小鼠腹腔巨噬细胞和人早幼粒白血病细胞系(HL-60)中,角鲨烯可以降低脂多糖孵育引起的细胞内ROS,抑制H2O2导致的蛋白质结构变化[29]。角鲨烯能够作用于几种依赖硫氧还蛋白结构域5(thioredoxin domain-containing 5,TXNDC5)的分子机制,调节内质网应激,保护小鼠肝细胞免受氧化和内质网应激损伤[30]。
2.3 调节氧化型低密度脂蛋白代谢
动脉粥样硬化是一种心血管疾病,其特征是脂质在动脉内膜过度积累,导致一系列炎症反应和氧化事件[31]。巨噬细胞表面的CD36受体可以调节巨噬细胞氧化型低密度脂蛋白(ox LDL)的识别与内吞,在动脉粥样硬化形成中发挥重要作用[32]。角鲨烯可以在不引起细胞毒性的情况下降低单核细胞和巨噬细胞CD36受体的表达,促进巨噬细胞对ox LDL的摄取,从而在动脉粥状硬化疾病中发挥积极作用[33]。
2.4 抗 炎
角鲨烯能够调节以中性粒细胞/单核细胞/巨噬细胞过度激活为特征的炎症条件,从而有效地终止炎症反应[34]。
2.5 抗病毒
角鲨烯能够有效地结合到花生芽坏死病毒(GBNV)外壳蛋白的结合位点,抑制和阻断病毒复制RNA与外壳蛋白的结合和传播[35]。
2.6 促进辅酶Q10合成
机体可以自身合成辅酶Q10(一种重要的亲脂性抗氧化剂),但皮肤中辅酶Q10的含量会随着年龄增长而减少,导致皱纹增多;将辅酶Q10局部应用于人体皮肤可以有效减少皱纹[36]。角鲨烯可以促进大鼠体内辅酶Q10的合成[37]。
3 角鲨烯的应用
3.1 医药领域
角鲨烯因其抗肿瘤、抗氧化、抗炎和保湿等特性而被应用于医药领域。它能够使药物更容易进入细胞并刺激免疫系统,使治疗更有效,可以作为佐剂应用到新冠肺炎病毒疫苗开发中[38]。
皮脂是由皮脂导管分泌的多种成分组成的混合物,其中角鲨烯含量为12%~15%,局部应用角鲨烯可以调节皮肤中不饱和脂肪酸的含量,从而治疗脂溢性皮炎和痤疮[39]。
银屑病是一种慢性、非传染性的表皮过度增生性炎症,全世界约有1.25亿人患病,角鲨烯已经被应用于银屑病的治疗[40]。为了在皮肤中建立局部药物库以提高对银屑病的疗效,研究人员[41]开发了角鲨烯集成的纳米结构脂质载体(NLC)基卡波姆940和羟乙基纤维素(HEC)柠檬酸他莫昔芬凝胶,可以确保在皮肤上停留更长时间(由于半固体的稠度),增加皮肤水分(亲水性凝胶聚合物)和脂质含量(由于天然皮肤脂质组分的存在),改善了药物在皮肤中的滞留,提高了对银屑病的疗效。
角鲨烯由于其高生物相容性被引入作为药物递送系统(DDS)的材料;DDS的化学、形态和流动性决定了能否准确地将具有生物活性的化合物或药物递送到体内疾病部位[42]。角鲨烯与药物共价结合的复合体,可以在不需要其他材料的情况下作为即用型药物载体发挥作用[43]。而且,这些角鲨烯-药物复合体可以实现在给药后的可视化[44]。
3.2 食品工业
研究开发富含生物活性物质的食品已成为食品科学的主要研究领域之一。众多对人体健康有益的天然化合物被筛选出来,应用于食品加工中。角鲨烯可以添加到即食功能性食品中,它能够改善松饼的品质,极大地提升松饼的外观、颜色、气味、质地和口感[45]。
食品级生物聚合物,如多糖、胶质、极性脂质等,常被用于包封生物活性化合物。研究人员以阿拉伯胶(GA)为参考材料,考察了麦芽糊精-乳清蛋白(MD-WPI)基角鲨烯粉末的稳定性和溶解性,结果表明角鲨烯作为功能性食品添加剂具有良好的应用前景[46]。此外,壳聚糖-乳清蛋白基角鲨烯也已经被用于功能性食品的开发,但其乳化及其随后的喷雾干燥封装工艺仍需进一步优化[47]。
明胶是一种优秀的食品包装材料,对氧气和紫外光具有良好的阻隔性,能够延缓食品的氧化,可以用于生产食品级无色薄膜[48]。角鲨烯可以取代明胶中50%的甘油,改善明胶薄膜的水蒸气透过率和透氧性,从而获得品质更好的食品级薄膜[49]。
3.3 畜牧业
在肉鸡养殖业,人们十分青睐肉鸡快速生长和瘦大鸡胸的遗传特性,但具有这些特性的肉鸡品系特别容易受到外界因素的影响而发生氧化应激,如疾病、温度、湿度、水和饲料中的有毒物质的影响[50]。将角鲨烯添加至饲粮中(尤其是在1 000 mg/kg水平)有助于改善肉鸡氧化应急,减轻肝脏损伤,并促进肉鸡增重[51]。
在仔猪饲粮中添加角鲨烯还可提高仔猪断奶后早期的生长速率,增强仔猪抗氧化能力,保护仔猪肝脏[52]。
3.4 其他领域
为了应对石油枯竭和全球变暖等问题,越来越多的人将目光投向生物质燃料资源。角鲨烯化学结构相对简单,含有6个几乎等价的C═C键,与石油中的碳氢化合物相似,可以作为石油替代资源。研究人员[53]利用具有高催化环氧化能力的钨基催化剂,以过氧化氢为氧化剂,在非均相体系中研究了角鲨烯的环氧化反应,成功实现了角鲨烯的环氧化。
4 前景与展望
角鲨烯因其广泛的生物活性,如抗氧化、抗癌、解毒等,在医药、食品、能源和化妆品等领域被广泛应用。可以预见,角鲨烯未来将在不同的领域得到更加广泛的研究和应用。传统的角鲨烯主要来源于深海鲨鱼的肝油,该方法不可持续且会对生态造成极大压力。科研人员和从业人员将目光投向以橄榄油、南瓜籽油、苋菜籽油为代表的植物源角鲨烯,以及以工程酵母和微藻为代表的微生物源角鲨烯。为了满足全球对角鲨烯研究利用的需求,寻找高产且廉价的角鲨烯来源替代物、利用生物技术开发和生产非动物性角鲨烯是今后工作的重点。
参 考 文 献
[1] MENG Y H, SHAO X X, WANG Y, et al. Extension of cell membrane boosting squalene production in the engineered Escherichia coli[J]. Biotechnology and Bioengineeri ng,2020,117(11):3499-3507.
[2] POLLIER J, VANCAESTER E, KUZHIUMPARAMBIL U, et al. A widespread alternative squalene epoxidase participates in eukaryote steroid biosynthesis[J]. Nature Microbiology,2019,4(2):226-233.
[3] KOPICOVá Z, VAVREINOVá S. Occurrence of squalene and cholesterol in various species of Czech freshwater fish[J]. Czech Journal of Food Science,2007,36(4):195-201.
[4] VERMA K C. Assessment of squalene variability and its enhancement in amaranthus (Amaranthus caudatus L.) populations: with application to vaccine development[J]. Biotechnol Appl Biochem,2022,69(6):2745-2752.
[5] SRIVASTAVA S, SREERAMA Y N, DHARMARAJ U. Effect of processing on squalene content of grain amaranth fractions[J]. Journal of Cereal Science,2021,100:103218.
[6]田原,郑坤,王绍文,等.不同控温储藏对橄榄油品质和主要功能性成分的影响[J].粮食科技与经济,2018,43(1):88-90
[7]李勇杰,耿树香,吴涛,等.云南省不同引种地油橄榄果制取的油脂脂肪酸组成和角鲨烯含量分析[J].中国油脂,2023,48(3):135-139.
[8]杨学芳,张继光,吴万富,等.南瓜籽油中角鲨烯含量及特征指标比较[J].食品与发酵工业,2021,47(5):217-223.
[9] GóRNA? P, RUDZI?SKA M, GRYGIER A, et al. Tephrosia apollinea seed: a new rich source of essential polyunsaturated fatty acids, tocopherols, sterols, and squalene[J]. Natural Product Research,2020,34(2):296-299.
[10] SHENG Y Y, XIANG J, WANG K R, et al. Extraction of squalene from tea leaves (Camellia sinensis) and its variations with leaf maturity and tea cultivar[J]. Frontiers in Nutrition,2022,9:755514.
[11] ZPARK S Y, CHOI S J, PARK H J, et al. Hexane extract of green tea (Camellia sinensis) leaves is an exceptionally rich source of squalene[J]. Food Science and Biotechnology,2020,29(6):769-775.
[12] POTIJUN S, JAINGAM S, SANEVAS N, et al. Green microalgae strain improvement for the production of sterols and squalene[J]. Plants (Basel),2021,10(8):1673.
[13] NAGAPPAN S, DAS P, ABDULQUADIR M, et al. Potential of microalgae as a sustainable feed ingredient for aquaculture[J]. Journal of Biotechnol,2021,341:1-20.
[14] LIMA V R D, SILVA S A G D, HENRIQUE B T, et al. Performance, carcass traits, physicochemical properties and fatty acids composition of lambs meat fed diets with marine microalgae meal (Schizochytrium sp.)[J]. Livestock Science,2021,243:104387.
[15] ZHOU C Y, LI M J, LU S R, et al. Engineering of cis-element in Saccharomyces cerevisiae for efficient accumulation of value-added compound squalene via downregulation of the downstream metabolic flux[J]. Journal of Agricultural and Food Chemistry,2021,69(42):12474-12484.
[16] ZHU Z T, DU M M, GAO B, et al. Metabolic compartmentalization in yeast mitochondria: burden and solution for squalene overproduction[J]. Metabolic Engineering,2021,68:232-245.
[17] TANG W Y, WANG D P, TIAN Y, et al. Metabolic engineering of Yarrowia lipolytica for improving squalene production[J]. Bioresource Technology,2021,323:124652.
[18] XU W, WANG D Y, FAN J B, et al. Improving squalene production by blocking the competitive branched pathways and expressing rate-limiting enzymes in Rhodopseudomonas palustris[J]. Biotechnology and Applied Biochemistry,2022,69(4):1502-1508.
[19] SENTHILKUMAR S, DEVAKI T, MANOHAR B M, et al. Effect of squalene on cyclophosphamide-induced toxicity[J]. Clinica Chimica Acta,2006,364(1/2):335-342.
[20] PALANIYANDI T, SIVAJI A, THIRUGANASAMBANDAM R, et al. In vitro antigastric cancer activity of squalene, a triterpenoid compound isolated from Rhizophora Mucronata mangrove plant leaves against AGS cell line[J]. Pharmacognosy Magazine,2018,14(57):369-376.
[21] KILIC U, SAHIN K, TUZCU M, et al. Enhancement of cisplatin sensitivity in human cervical cancer: epigallocatechin-3-gallate[J]. Frontiers in Nutrition,2015,1:28.
[22] SAKUL A, OZANSOY M, ELIBOL B, et al. Squalene attenuates the oxidative stress and activates AKT/mTOR pathway against cisplatin-induced kidney damage in mice[J]. Turkish Journal of Biology,2019,43(3):179-188.
[23] RAJAMANI K, THIRUGNANASAMBANDAN S S, NATESAN C, et al. Squalene deters drivers of RCC disease progression beyond VHL status[J]. Cell Biology and Toxicology,2021,37(4):611-631.
[24] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians,2018,68(6):394-424.
[25] KATDARE M, SINGHAL H, NEWMARK H, et al. Prevention of mammary preneoplastic transformation by naturally-occurring tumor inhibitors[J]. Cancer Letters,1997,111(1/2):141-147.
[26] SáNCHEZ-QUESADA C, GUTIéRREZ-SANTIAGO F, RODRíGUEZ-GARCíA C, et al. Synergistic effect of squalene and hydroxytyrosol on highly invasive MDA-MB-231 breast cancer cells[J]. Nutrients,2022,14(2):255.
[27] ALBANO E, MOTTARAN E, OCCHINO G, et al. Review article: role of oxidative stress in the progression of non-alcoholic steatosis[J]. Alimentary Pharmacology & Therapeutics,2005,22:71-73.
[28] RAMíREZ-TORRES A, BARCELó-BATLLORI S, MARTíNEZ-BEAMONTE R, et al. Proteomics and gene expression analyses of squalene-supplemented mice identify microsomal thioredoxin domain-containing protein 5 changes associated with hepatic steatosis[J]. Journal of Proteomics,2012,77:27-39.
[29] CáRDENO A, APARICIO-SOTO M, MONTSERRAT-DE L P, et al. Squalene targets pro-and anti-inflammatory mediators and pathways to modulate over-activation of neutrophils, monocytes and macrophages[J]. Food,2015,14:779–790.
[30] BIDOOKI S H, ALEJO T, SáNCHEZ-MARCO J, et al. Squalene loaded nanoparticles effectively protect hepatic AML12 cell lines against oxidative and endoplasmic reticulum stress in a TXNDC5-dependent way[J]. Antioxidants (Basel),2022,11(3):581.
[31] LUSIS A J. Atherosclerosis[J]. Nature,2000,407:233-241.
[32] COLLOT-TEIXEIRA S, MARTIN J, MCDERMOTT-ROE C, et al. CD36 and macrophages in atherosclerosis[J]. Cardiovascular Research,2007,75(3):468-477.
[33] GRANADOS-PRINCIPAL S, QUILES J L, RAMIREZ-TORTOSA C L, et al. Squalene ameliorates atherosclerotic lesions through the reduction of CD36 scavenger receptor expression in macrophages[J]. Molecular Nutrition & Food Research,2012,56(5):733-740.
[34] CáRDENO A, APARICIO-SOTO M, MONTSERRAT-DE L P S, et al. Squalene targets pro- and anti-inflammatory mediators and pathways to modulate over-activation of neutrophils, monocytes and macrophages[J]. Journal of Functional Foods,2015,14:779-790.
[35] SANGEETHA B, KRISHNAMOORTHY A S, SHARMILA D J S, et al. Molecular modelling of coat protein of the groundnut bud necrosis tospovirus and its binding with squalene as an antiviral agent: in vitro and in silico docking investigations[J]. International Journal of Biological Macromolecules,2021,189:618-634.
[36] MUTA-TAKADA K, TERADA T, YAMANISHI H, et al. Amano[J]. BioFactors,2009,35:435-441.
[37] YU W J, SUN K J, ZHANG L Y, et al. Investigation of the effects of squalene and squalene epoxides on the homeostasis of coenzyme Q10 in rats by UPLC-Orbitrap MS[J]. Chemistry & Biodiversity,2020,17(8):e2000243.
[38] YARKENT ?, ONCEL S S. Recent progress in microalgal squalene production and its cosmetic application[J]. Biotechnology and Bioprocess Engineering,2022,27(3):295-305.
[39] WO?OSIK K, KNA? M, ZALEWSKA A, et al. The importance and perspective of plant-based squalene in cosmetology[J]. Journal of Cosmetic Science,2013,64(1):59-66.
[40] HUANG Z R, LIN Y K, FANG J Y. Biological and pharmacological activities of squalene and related compounds: potential uses in cosmetic dermatology[J]. Molecules,2009,14(1):540-554.
[41] SHARMA A, UPADHYAY D K SARMA G S, et al. Squalene integrated NLC based gel of tamoxifen citrate for efficient treatment of psoriasis: a preclinical investigation[J]. Journal of Drug Delivery Science and Technology,2020,56:101568.
[42] FENG J, LEPETRE-MOUELHI S, COUVREUR P. Design, preparation and characterization of modular squalene-based nanosystems for controlled drug release[J]. Current Topics in Medicinal Chemistry,2017,17(25):2849-2865.
[43] SOBOT D, MURA S, YESYLEVSKYY S O, et al. Conjugation of squalene to gemcitabine as unique approach exploiting endogenous lipoproteins for drug delivery[J]. Nature Communications,2017,8:15678.
[44] LEPELTIER E, BOURGAUX C, ROSILIO V, et al. Self-assembly of squalene-based nucleolipids: relating the chemical structure of the bioconjugates to the architecture of the nanoparticles[J]. Langmuir,2013,29(48):14795-14803.
[45] KUMAR L R G, KUMAR H S, TEJPAL C S, et al. Exploring the physical and quality attributes of muffins incorporated with microencapsulated squalene as a functional food additive[J]. Journal of Food Science and Technology,2021,58(12):4674-4684.
[46] KUMAR L R G, TEJPAL C S, ANAS K K, et al. Binary blend of maltodextrin and whey protein outperforms gum arabic as superior wall material for squalene encapsulation[J]. Food Hydrocolloids,2021,121:106976.
[47] LEKSHMI R G K, RAHIMA M, CHATTERJEE N S, et al. Chitosan - whey protein as efficient delivery system for squalene: characterization and functional food application[J]. International Journal of Biological Macromolecules,2019,135:855-863.
[48] ZHANG L, SIMPSON B K, DUMONT M. Effect of beeswax and carnauba wax addition on properties of gelatin films: a comparative study[J]. Food Bioscience,2018,26:88-95.
[49] ALI A M M, PRODPRAN T, BENJAKUL S. Effect of squalene as a glycerol substitute on morphological and barrier properties of golden carp ( Probarbus jullieni ) skin gelatin film[J]. Food Hydrocolloids,2019,97:105201.
[50] ESTéVEZ M. Oxidative damage to poultry: from farm to fork[J]. Poultry Science,2015,94(6):1368-1378.
[51] CHEN Y P, GU Y F, ZHAO H R, et al. Effects of graded levels of dietary squalene supplementation on the growth performance, plasma biochemical parameters, antioxidant capacity, and meat quality in broiler chickens[J]. Poultry Science,2020,99(11):5915-5924.
[52] GAO Y, DU X, LI B X, et al. Effects of dietary squalene supplementation on growth performance, blood biochemical indexes and antioxidant capacity of early weaned piglets[J]. Chinese Journal of Veterinary Medicine,2022,42 (1):160-164.
[53] HIDEHISA K, YUKI O, MASASHI K, et al. Epoxidation of microalgal biomass-derived squalene with hydrogen peroxide using solid heterogeneous tungsten-based catalyst[J]. Tetrahedron,2020,76(16):131109.