李芃菲 肖敏 马雪娇 严兴科 马重兵
【摘要】 抑郁症是由多种原因导致的精神疾病,其发病机制尚未完全明确。本文从脑功能和结构角度总结抑郁症的发病机制,发现抑郁症与海马、前额叶等脑区密切相关,海马及前额叶皮质面积、体积减小,神经元形态及超微结构损害是抑郁症的解剖和结构基础,血流减少、代谢降低、大脑网络连接异常、神经电生理活动失衡是抑郁症的脑功能机制。
【关键词】 抑郁症 神经元 功能连接 结构连接 神经电生理
Research Progress on Brain Function Mechanism of Onset of Depressive Disorder/LI Pengfei, XIAO Min, MA Xuejiao, YAN Xingke, MA Chongbing. //Medical Innovation of China, 2024, 21(05): -169
[Abstract] Depressive disorder is a mental disease caused by many reasons, and its pathogenesis has not been fully defined. This paper summarizes the pathogenesis of depression disorder from the perspective of brain function and structure, and finds that depression disorder is closely related to brain regions such as hippocampus and prefrontal cortex. The decrease in the area and volume of hippocampus and prefrontal cortex and the damage of neuronal morphology and ultrastructure are the anatomical and structural basis of depression disorder. Decreased blood flow, decreased metabolism, abnormal brain network connectivity and imbalance of neuroelectrophysiological activity are the brain functional mechanisms of depression disorder.
[Key words] Depression disorder Neuron Functional connectivity Structural connectivity Neuroelectrophysiology
抑郁症是由多种原因导致的精神疾病,表现为显著而持久的心境低落、兴趣减退和快感缺失等,具有高发病率、高复发率、高自杀率及高致残率等特点[1]。对抑郁症发病机制的研究多从免疫学、神经递质、氧化应激、神经营养因子等方面开展[2]。近年来,从脑功能和结构角度探讨抑郁症发病机制的研究日益增多,本文从关键脑区皮质面积、体积减小,神经元形态及超微结构损害的解剖和结构,以及血流减少、代谢降低,大脑网络连接异常,神经电生理活动失衡的脑功能角度,将抑郁症的发病机制综述如下。
1 抑郁症患者大脑结构异常改变
抑郁症患者的大脑出现局灶性功能和结构异常,涉及海马、内侧前额叶、背外侧前额叶、前扣带回、后扣带回、楔前叶、杏仁核和尾状核[3]。海马和前额叶是抑郁症发病的关键脑区[4]。海马及前额叶皮质面积、体积减小,神经细胞数量减少、形态异常改变,神经元树突复杂性改变及突触丢失等可能是抑郁症发病的关键中枢结构机制。
1.1 海马及前额叶面积、体积减小
研究表明,抑郁症患者前额叶皮层厚度、表面积减小[5]。皮层厚度受神经元细胞排列和密度影响,体现了皮层结构的空间变化;而皮层表面积反映皮层柱状排列细胞的数目,反映皮层体积的改变[6]。抑郁症患者海马和前额叶的灰质区域体积减小,且体积变化的程度与抑郁症的病程和严重程度呈正相关[7]。在啮齿动物应激模型中也观察到海马体积减小,而前额叶体积变化没有明顯的一致性,可能是因为人和啮齿动物前额叶的细胞结构和相对大小差异较大[8]。海马和杏仁核联系紧密,常被称为海马-杏仁核复合体,共同完成一系列情感记忆功能[9]。而杏仁核体积变化在抑郁症患者中存在争议,但在抑郁动物模型中发现杏仁核体积增大[10]。杏仁核体积的增大与该区域和大脑其他部分的结构协方差增加、突触蛋白斑点密度增加和抑郁样行为相关[11]。
1.2 神经元形态及超微结构损害
神经元细胞结构的改变是抑郁症大脑宏观结构改变的基础,并介导了抑郁样表型的表达。在抑郁症患者的尸检脑组织样本中观察到神经细胞数量减少、萎缩/肥大、树突复杂性改变及突触丢失等现象,其中海马和前额叶细胞丢失最为明显[12]。海马中,神经元胞体减小,堆积密度增加,成熟颗粒细胞数量减少,海马亚区也存在胶质细胞丢失,特别是星形胶质细胞[13]。有抑郁样行为的猴子海马区域的神经纤维层和细胞层体积减小,胶质细胞密度降低,但无神经元数量减少[14]。海马中神经胶质细胞胞体减小,堆积密度增加,成熟颗粒细胞数量减少[15]。在啮齿动物应激模型中观察到胶质细胞密度、标记物和代谢降低[16]。前额叶中,胶质纤维酸性蛋白(glial fibrillary acidic protein, GFAP)mRNA和蛋白质水平均下降,但在其他区域没有下降,这表明星形胶质细胞的改变可能是局部特异性的[17]。前额叶内少突胶质细胞数量减少,与星形胶质细胞功能受损有关[18]。抑郁大鼠CA1、CA3和齿状回亚区神经突触密度降低,海马树突状萎缩[19]。在抑郁动物模型、抑郁症患者尸检脑标本中均发现海马及前额叶突触减少、突触密度降低[20]。抑郁症患者背外侧前额叶、海马、扣带皮层的突触密度与抑郁症的严重程度呈负相关[21],同时,突触功能相关的基因表达减少、突触信号蛋白水平降低[22]。
2 抑郁症患者大脑功能异常改变
抑郁症患者脑血流量显著减少,表明存在脑损伤,提示认知功能异常可能与此相关;同时代谢显著增强,存在相对过度激活现象,可能是导致抑郁症患者情绪异常的另一原因[23]。从能量代谢角度来看,抑郁小鼠内侧前额叶存在较高的自发活动及较低的产能效率,这种自发活动与产能效率的不匹配,提示抑郁癥存在能量代谢障碍[24]。脑电图(electroencephalogram,EEG)研究结果显示,静息态EEG偏侧化程度与抑郁水平呈负相关,从脑成像角度来看,抑郁症状及其严重程度与关键脑区ReHo值呈负相关[25]。扣带回-前额叶-顶叶网络异常及双侧前额叶功能异常是抑郁症患者认知障碍的重要神经基础[26]。综上,血流减少、异常激活、能量代谢障碍和电生理活动失衡可能是抑郁症发病的关键中枢功能机制。
2.1 网络连接异常
2.1.1 结构连接断裂 抑郁症存在结构和功能的连接中断[27]。区域间出现广泛的连接中断可能会导致抑郁症患者整体网络的完整性降低,脑白质纤维束(white matter fiber bundle,WMFB)完整性异常可能促进皮层连接区和皮层下区功能障碍,进而导致相应的抑郁症状[28]。研究发现,抑郁症患者默认网络(default mode network,DMN)和额皮质下网络中的脑白质(white matter,WM)连接中断[29]。DMN参与情绪和自我处理的过程,而额叶-皮层下网络对情绪调节和认知功能至关重要,这些异常可能是抑郁症患者个体功能和行为缺陷的结构基础[30]。抑郁症患者白质束存在连接异常,包括扣带束、钩状束、内侧前脑束、丘脑前辐射、胼胝体辐射线额部、上纵束、额枕下束、下纵束和皮质脊髓束[31]。抑郁症患者从前胼胝体到前扣带的纤维束各向异性分数(fractional anisotropy,FA)值显著降低,FA值越低,患抑郁症的风险就越高[32]。
2.1.2 功能连接障碍 抑郁症与参与情绪处理、执行功能和奖赏处理的多个大脑网络的异常静息态功能连接(functional connectivity,FC)有关[33]。抑郁症患者静息态网络内及网络间的FC模式都有所改变[34]。研究发现,抑郁症患者执行控制网络(executive control network, ECN)内存在低连接模式,DMN内存在超链接模式;同时ECN-DMN网络间也存在异常的超链接[35]。研究进一步发现,抑郁症的FC受损是进行性的。首发抑郁症患者的感觉运动网络、DMN和背侧注意网络表现出低连接性,而复发性抑郁症患者的感觉运动网络、突显网络、ECN、DMN和背侧注意网络都表现出高连接性,首发抑郁症患者表现出的低连接性和复发性抑郁症患者的高连接性与发作次数和总病程时间呈负相关[36]。
2.2 神经电生理活动失衡
2.2.1 EEG EEG能够探测大脑皮层神经电活动变化[37]。应用EEG探索抑郁症潜在的标志物可用于疾病诊断和治疗预测[38]。不同频段与不同大脑机制有关。α波反映大脑的静息态和放松,有自杀意念的抑郁症患者在整夜睡眠中α波活动有所增加[39]。α频段偏侧化与趋避模态有关[40],它可以预测特定的症状,如烦躁、懒惰[41],焦虑症可能会改变α频段偏侧化,使抑郁症难以诊断[42]。β波与焦虑和反刍思维有关,抑郁症患者大脑左侧β波功率值有所降低[43]。θ波与情绪加工有关,抑郁症患者大脑枕区和顶区θ波活跃度增强[44]。γ波与感觉和情绪波动有关,适当的γ波功率可以保证抑郁症患者情绪平稳[45]。δ波与深度睡眠有关,抑郁症患者面对负目标时,在中央顶叶和侧电极有更大的δ波幅值[46]。
2.2.2 事件相关电位(event-related potential,ERP) 诱发电位研究采用情绪面孔呈现或工作记忆等多种不同任务,反映抑郁症被试患者大脑功能的差异[47]。ERP是一种特殊的脑诱发电位,它是个体接受某项刺激(视觉、听觉或触觉)后产生的,反映了患者认知过程中大脑的神经电生理变化[48]。以P300为代表的内源性ERP成分与认知心理加工过程密切相关,常被用于抑郁症患者认知功能损害的评估[49]。P300潜伏期反映大脑对外部目标刺激做出反应时的神经传导速度,是反映认知功能效率的指标[50]。P300波幅反映大脑信息加工时有效资源动员的程度和受试者对靶刺激的注意程度,随着靶刺激识别难度增加[51]。研究发现抑郁症患者P300潜伏期延长、波幅下降,提示抑郁症患者存在认知功能受损,且额叶脑区与认知功能障碍关系密切[52]。
3 小结
抑郁症的发生与关键脑区功能、结构异常及大脑网络连接异常等因素密切相关,同时脑连接组学也强调抑郁症大规模功能和结构脑网络的拓扑组织中断涉及全局拓扑、模块化结构和网络中枢。
本文总结发现,从大脑结构角度来看,海马及前额叶皮质面积、体积减小,神经细胞数量减少、形态及超微结构损害,神经元树突复杂性改变及突触丢失;从大脑功能角度来看,大脑网络功能连接障碍、结构连接断裂,神经元电活动传导、整合异常,进而导致中枢内环境紊乱,出现抑郁症状。
抑郁症的特征是结构和功能的连接中断,然而,结构与功能的关系仍不清楚。海马-前额叶连通性改变也会导致抑郁症患者认知缺陷,未来可关注海马和前额叶的结构和连通性变化,进一步深入研究。抑郁症还与大脑网络的异常拓扑组织有关,包括整体完整性和区域连通性的破坏。未来应进行多模态成像研究,以确定抑郁症的结构和功能异常之间的拓扑关系。
参考文献
[1] MALHI G S, MANN J J.Depression[J].Lancet,2018,392(10161):2299-2312.
[2] KENNIS M,GERRITSEN L,VAN D M,et al.Prospective biomarkers of major depressive disorder: a systematic review and meta-analysis[J].Mol Psychiatry,2020,25(2):321-338.
[3] ROLLS E T.Attractor cortical neurodynamics, schizophrenia, and depression[J].Transl Psychiatry,2021,11(1):215.
[4] PRICE R B,DUMAN R.Neuroplasticity in cognitive and psychological mechanisms of depression: an integrative model[J].Mol Psychiatry,2020,25(3):530-543.
[5]牟靜平,成财,梅兰,等.抑郁症灰白质表面积性别差异研究[J].磁共振成像,2021,12(1):21-26,37.
[6] HANFORD L C,NAZAROV A,HALL G B,et al.Cortical thickness in bipolar disorder:a systematic review[J].Bipolar Disord,2016,18(1):4-18.
[7] HAN K M,KIM A,KANG W,et al.Hippocampal subfield volumes in major depressive disorder and bipolar disorder[J].Eur Psychiatry,2019,57:70-77.
[8] SARABDJITSINGH R A,LOI M,JOELS M,et al.Early life stress-induced alterations in rat brain structures measured with high resolution MRI[J/OL].PLoS One,2017,12(9):e0185061.https://pubmed.ncbi.nlm.nih.gov/28945761/.
[9] ZHANG L Q,HU X Y,HU Y B,et al.Structural covariance network of the hippocampus-amygdala complex in medication-na?ve patients with first-episode major depressive disorder[J].Psychoradiology,2022,2(4):190-198.
[10] GROGANS S E,FOX A S,SHACKMAN A J.The amygdala and depression: a sober reconsideration[J].Am J Psychiatry,2022,179(7):454-457.
[11] NIKOLOVA Y S,MISQUITTA K A,ROCCO B R,et al.Shifting priorities: highly conserved behavioral and brain network adaptations to chronic stress across species[J].Transl Psychiatry,2018,8(1):26.
[12] CHEN F,BERTELSEN A B,HOLM I E,et al.Hippocampal volume and cell number in depression, schizophrenia, and suicide subjects[J].Brain Res,2020,1727:146546.
[13] WANG H,HE Y,SUN Z,et al.Microglia in depression: an overview of microglia in the pathogenesis and treatment of depression[J].J Neuroinflammation,2022,19(1):132.
[14] ZHOU B,ZHU Z,RANSOM B R,et al.Oligodendrocyte lineage cells and depression[J].Mol Psychiatry,2021,26(1):103-117.
[15]COBB J A,O'NEILL K,MILNER J,et al.Density of GFAP-immunoreactive astrocytes is decreased in left hippocampi in major depressive disorder[J].Neuroscience,2016,316:209-220.
[16] DU P A,ONORATO D,EIBEN I,et al.Chronic stress followed by social isolation promotes depressive-like behaviour, alters microglial and astrocyte biology and reduces hippocampal neurogenesis in male mice[J]. Brain Behav Immun,2021,91:24-47.
[17] DURKEE C,KOFUJI P,NAVARRETE M,et al. Astrocyte and neuron cooperation in long-term depression[J].Trends Neurosci,2021,44(10):837-848.
[18] TANTI A,LUTZ P E,KIM J,et al.Evidence of decreased gap junction coupling between astrocytes and oligodendrocytes in the anterior cingulate cortex of depressed suicides[J].Neuropsychopharmacology,2019,44(12):2099-2111.
[19] FRIES G R,SALDANA V A,FINNSTEIN J,et al.Molecular pathways of major depressive disorder converge on the synapse[J].Mol Psychiatry,2023,28(1):284-297.
[20] PAREKH P K,JOHNSON S B,LISTON C. Synaptic mechanisms regulating mood state transitions in depression[J].Annu Rev Neurosci,2022,45:581-601.
[21] HOLMES S E,SCHEINOST D,FINNEMA S J,et al.Lower synaptic density is associated with depression severity and network alterations[J].Nat Commun,2019,10(1):1529.
[22] GRANT S.Synapse diversity and synaptome architecture in human genetic disorders[J].Hum Mol Genet,2019,28(R2):219-225.
[23]陳嘉文,郁芸,韩新焕,等.抑郁症静息态脑功能影像的脑区激活可能性分析[J].南京医科大学学报(自然科学版),2020,40(11):1704-1712,1724.
[24]张竞予,刘恺,曾善美,等.慢性不可预知温和刺激小鼠内侧前额叶的能量代谢障碍及功能磁共振成像[J].南方医科大学学报,2021,41(4):521-528.
[25] TANG C,ZHANG Y,ZHAI Z,et al.Mechanism of depression through brain function imaging of depression patients and normal people[J].J Healthc Eng,2022,2022:1125049.
[26] KANG S G,CHO S E.Neuroimaging biomarkers for predicting treatment response and recurrence of major depressive disorder[J].Int J Mol Sci,2020,21(6):2148.
[27] ARULASS A R,KITZBICHLER M G,MORGAN S E,et al.Dysconnectivity of a brain functional network was associated with blood inflammatory markers in depression[J].Brain Behav Immun,2021,98:299-309.
[28] BEKHBAT M,LI Z,MEHTA N D,et al.Functional connectivity in reward circuitry and symptoms of anhedonia as therapeutic targets in depression with high inflammation: evidence from a dopamine challenge study[J].Mol Psychiatry,2022,27(10):4113-4121.
[29] HOFLICH A,MICHENTHALER P,KASPER S,et al.Circuit mechanisms of reward, anhedonia, and depression[J].Int J Neuropsychopharmacol,2019,22(2):105-118.
[30] GRAY J P,MULLER V I,EICKHOFF S B,et al.Multimodal abnormalities of brain structure and function in major depressive disorder: a meta-analysis of neuroimaging studies[J].Am J Psychiatry,2020,177(5):422-434.
[31] KOSHIYAMA D,FUKUNAGA M,OKADA N,et al.White matter microstructural alterations across four major psychiatric disorders: mega-analysis study in 2937 individuals[J].Mol Psychiatry,2020,25(4):883-895.
[32] VULSER H,PAILLERE MARTINOT M L,ARTIGES E,et al.Early variations in white matter microstructure and depression outcome in adolescents with subthreshold depression[J].Am J Psychiatry,2018,175(12):1255-1264.
[33] CHIN FATT C R,JHA M K,COOPER C M,et al.Effect of intrinsic patterns of functional brain connectivity in moderating antidepressant treatment response in major depression[J].Am J Psychiatry,2020,177(2):143-154.
[34] GUDAYOL-FERRE E,PERO-CEBOLLERO M,GONZALEZ-GARRIDO A A,et al.Changes in brain connectivity related to the treatment of depression measured through fMRI: a systematic review[J].Front Hum Neurosci,2015,9:582.
[35] KAISER R H,ANDREWS-HANNA J R,WAGER T D,et al.Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity[J].JAMA Psychiatry,2015,72(6):603-611.
[36] LIU J,FAN Y, LI L Z,et al.The neuroprogressive nature of major depressive disorder: evidence from an intrinsic connectome analysis[J].Transl Psychiatry,2021,11(1):102.
[37] ZHANG J,LIU D,ZHONG D,et al.Specificity study of visualization analysis of electroencephalogram diagnosis of depression based on CiteSpace[J].Sheng Wu Yi Xue Gong Cheng Xue Za Zhi,2021,38(5):919-931.
[38] DE AGUIAR NETO F S, ROSA J L G.Depression biomarkers using non-invasive EEG: a review[J].Neurosci Biobehav Rev,2019,105:83-93.
[39] DOLSEN M R,CHENG P,ARNEDT J T,et al.Neurophysiological correlates of suicidal ideation in major depressive disorder: hyperarousal during sleep[J].J Affect Disord,2017,212:160-166.
[40] LEE P F,KAN D,CROARKIN P,et al.Neurophysiological correlates of depressive symptoms in young adults: a quantitative EEG study[J].J Clin Neurosci,2018,47:315-322.
[41] NELSON B D,KESSEL E M,KLEIN D N,et al.Depression symptom dimensions and asymmetrical frontal cortical activity while anticipating reward[J].Psychophysiology,2018,55(1):10.
[42] NUSSLOCK R,SHACKMAN A J,MCMENAMIN B W,et al.Comorbid anxiety moderates the relationship between depression history and prefrontal EEG asymmetry[J].Psychophysiology,2018,55(1):10.
[43] SPIRONELLI C,MAFFEI A,ROMEO Z,et al.Evidence of language-related left hypofrontality in major depression: an EEG beta band study[J].Sci Rep,2020,10(1):8166.
[44] CAULFIELD K A.Is accelerated, high-dose theta burst stimulation a panacea for treatment-resistant depression?[J].J Neurophysiol,2020,123(1):1-3.
[45] FITZGERALD P J,WATSON B O.Gamma oscillations as a biomarker for major depression: an emerging topic[J].Transl Psychiatry,2018,8(1):177.
[46] LIU M,ZHOU L,WANG X,et al.Deficient manipulation of working memory in remitted depressed individuals: behavioral and electrophysiological evidence[J].Clin Neurophysiol,2017,128(7):1206-1213.
[47] BURKHOUSE K L,OWENS M,FEURER C,et al.Increased neural and pupillary reactivity to emotional faces in adolescents with current and remitted major depressive disorder[J].Soc Cogn Affect Neurosci,2017,12(5):783-792.
[48] KLUMPP H,SHANKMAN S A.Using event-related potentials and startle to evaluate time course in anxiety and depression[J].Biol Psychiatry Cogn Neurosci Neuroimaging,2018,3(1):10-18.
[49] RUOHONEN E M,ALHAINEN V,ASTIKAINEN P.Event-related potentials to task-irrelevant sad faces as a state marker of depression[J].Biol Psychol,2020,149:107806.
[50] RUPPRECHTER S,STANKEVICIUS A,HUYS Q,et al.Abnormal reward valuation and event-related connectivity in unmedicated major depressive disorder[J].Psychol Med,2021,51(5):795-803.
[51] FELDMANN L,PIECHACZEK C E,PEHL V,et al.State or trait? Auditory event-related potentials in adolescents with current and remitted major depression[J].Neuropsychologia,2018,113:95-103.
[52] ZHOU L,WANG G,NAN C,et al.Abnormalities in P300 components in depression: an ERP-sLORETA study[J].Nord J Psychiatry,2019,3(1):1-8.