黄 振,慈惠婷,柳志勇,薛玉前,任秀霞,薛璟祺,张秀新,*
(1.枣庄职业学院,山东枣庄 277800;2.中国农业科学院蔬菜花卉研究所,北京 100081)
药用菊花为菊科植物菊(Chrysanthemum morifoliumRamat.)的干燥头状花序,2020 年版《中国药典》(一部)收载的亳菊、滁菊、贡菊、杭菊、怀菊5 种药材类型[1],具有药茶两用功能。现代药理研究表明,药用菊花富含绿原酸、木犀草苷和3,5-O-二咖啡酰基奎宁酸(3,5-Dicaffeoylquinic acid,3,5-DCQA)3 个药效指标成分[1],以及木犀草素与芹菜素等黄酮类化合物[2],均可作为药用菊花质量评价的主要指标。同时,这5 类药效成分具有抗氧化[3]、抗炎[4]、抗肿瘤[5]、抗病毒[6]、保肝[7]、降血压[8]、神经保护[9]等多种功效。另外,药用菊花还富含多糖[10]、氨基酸[11]、矿质元素[12]等营养功能成分。其中,多糖兼具抗肿瘤[13]、抗氧化[14]及延缓衰老[15]等生理功能。在实际生产中,药用菊花因受产地、品种类型、栽培技术、采收期与加工方式等多种因素的影响,致使其产量与品质成分含量等存在较大差异。通过对不同产地来源的药用菊花品种产量与品质功能成分的测定分析与综合评价,可为筛选高产、优质的专用药用(茶用)菊花新品种提供参考。
主成分分析(Principal component analysis,PCA)及聚类分析研究,多用于多指标的品质、产量性状的综合评价。目前,主成分及聚类分析已广泛应用于苹果[16]、鲜食葡萄[17]、冬枣[18]、樱桃番茄[19]、大蒜[20]等果蔬作物以及食用菊农艺与食用品质性状综合评价[21]、药用菊花多酚物质等活性成分的质量评价[22]、药用及茶用菊花农艺性状的遗传多样性分析等[23],而对不同原产地与引种地药用菊花品种资源的产量与品质指标的主成分分析及其综合评价体系的构建研究,鲜有报道。
本研究针对我国药用菊花生产中存在的品种混杂、种性退化、规范化种植水平低、重视茶用而忽视药用等不良问题[24],通过实地调研取样与引种栽培试验,结合外观产量性状的指标观测,运用超高效液相色谱(Ultra-high performance liquid chromatography,UPLC)法和比色法,测定与分析不同产地药用菊花中品质成分含量,继而通过多重比较、相关性分析、主成分分析和聚类分析,对不同产地药用菊花品种的产量高低与品质优劣进行综合评价。最终筛选出适于山东枣庄地区种植的产量性状突出、品质成分优良的药用或茶用菊花专用品种,并初步建立了药用菊花品种资源的综合评价体系,为我国药用菊花的资源评价、新品种选育、规范化引种栽培及其药食同源利用提供理论依据。
引种试验圃地设在山东省枣庄市薛城区小吕巷村,2019 年4~5 月,分别从我国5 大类菊花药材的7 个产地,共计引进种植了8 个主栽品种。同时于原产地和引种地分别对应采收盛花期开放的菊花头状花序鲜样16 份,并均于100~105 ℃蒸青3 min、50 ℃恒温烘干[25],粉碎,过80 目筛[26],备用。上述不同产地来源的样品,经中国农业科学院张秀新研究员鉴定为菊科植物菊(C.morifoliumRamat.)的干燥头状花序。其样品详细信息见表1。
表1 不同产地药用菊花品种的取样信息Table 1 Sampling information of medicinal C.morifolium varieties from different areas
绿原酸(纯度≥98%,批号9308021-20191108)、木犀草苷(纯度≥98%,批号118D021-20210118)、3,5-O-二咖啡酰基奎宁酸(纯度≥98%,批号428B 021-20210428)、木犀草素(纯度≥98%,批号C29N10 Q104574)、芹菜素(纯度≥98%,批号T04S8F43072)北京索莱宝科技有限公司;甲醇、甲酸 色谱纯,北京汇海科仪科技有限公司;其他试剂芦丁、苯酚、葡萄糖等 国产分析纯,上海源叶生物科技有限公司。
ACQUITY 超高效液相色谱仪 Waters 公司;DHG-9070 电热鼓风干燥箱 上海一恒科学仪器有限公司;FW135 型粉碎机 北京市永光明医疗仪器有限公司;AR1140 电子分析天平 Adventurer 公司;KQ-500DB 型数控超声波清洗器 昆山市超声仪器有限公司;5427R 离心机 SIGMA 公司;SC-30 数控超级恒温槽 宁波新芝生物科技股份有限公司;UV-1750 紫外-可见分光光度计 岛津(上海)实验器材有限公司。
1.2.1 主要产量指标的测定 2019 年10~11 月盛花期,于药用菊花原产地和枣庄引种地随机选取各药用菊花品种10 株(重复3 次),舌状花开放70%~80%时采收头状花序,用游标卡尺测量花序直径(mm)、计数单株花头数(个);用电子天平测定单花鲜重(g)、单花干重(g)、单株花头鲜重(g)、单株花头干重(g)。
1.2.2 主要药效成分的测定 参考2020 年版《中国药典》(一部)菊花项下药效指标成分的测定方法[1]与刘汉珍等[27]、江珊珊等[28]的实验方法,稍加改进,采用UPLC 法同时测定不同产地药用菊花中绿原酸、木犀草苷、3,5-DCQA、木犀草素、芹菜素的含量。
1.2.2.1 供试品溶液的制备 取菊花样品粉末(过80 目筛)约0.25 g,精密称定,置100 mL 具塞锥形瓶中,精密加入70%甲醇25.0 mL,密塞,称定质量,超声处理(功率300 W,频率45 kHz)40 min,温度为20 ℃,放冷,再称定质量,用70%甲醇补足减失的质量,摇匀(溶液离心10 min,13000 r/min),0.45 µm 微孔滤膜滤过,取续滤液作为供试品溶液。
1.2.2.2 对照品溶液的制备 根据前人报道[27-28],分别精密称取绿原酸1.17 mg、木犀草苷2.52 mg、3,5-O-二咖啡酰基奎宁酸2.32 mg、木犀草素1.16 mg、芹菜素1.16 mg,置于10 mL 棕色量瓶中,用70%甲醇溶解后定容,摇匀,得各对照品储备液。精密移取上述各对照品储备液1 mL,加70%甲醇稀释定容成10 mL(可用0.45 μm 微孔滤膜过滤),即得每1 mL 含绿原酸11.7 µg,木犀草苷25.2 µg,3,5-O-二咖啡酰基奎宁酸23.2 µg,木犀草素11.6 µg,芹菜素11.6 µg 的混合对照品溶液(10 ℃以下保存)。
1.2.2.3 色谱条件 色谱柱:Waters ACQUITY UPLC HSS T3(2.1 mm×100 mm,1.8 μm)柱;流动相:甲醇(A)-0.1%甲酸(B),流动相A 体积比例为55%,流动相B 体积比例为45%,等度洗脱12 min;检测波长:320 nm;流速:0.2 mL/min;柱温:30 ℃;进样量:1 μL。各样品平行测定3 次,取平均值。
1.2.2.4 样品含量的测定 按上述色谱条件,分别精密吸取供试品溶液各1 μL,依次注入液相色谱仪,测定上述5 个药效成分的峰面积。分别以上述各对照品的质量浓度为横坐标(x),以峰面积值为纵坐标(y),得出各标准曲线:
1.2.3 总黄酮含量的测定 参考朱琳等[29]的方法,稍加改进,采用亚硝酸钠-硝酸铝比色法测定。分别精密称定样品粉末(过80 目筛)约1.0 g,置100 mL具塞锥形瓶中,精密加入70%乙醇30 mL,密塞,称定质量,静置30 min,室温超声处理20 min(功率200 W,频率45 kHz),放冷,称定重量,用70%乙醇补足减失质量,摇匀,溶液离心10 min(13000 r/min),滤过,取续滤液10 mL 于100 mL 容量瓶中,用70%乙醇溶液定容至刻度,摇匀,即得供试品溶液。
精密吸取供试品溶液2 mL 置于10 mL 试管中,加5%亚硝酸钠溶液1 mL,混匀,放置6 min,加10%硝酸铝溶液1 mL,振荡摇匀,放置6 min,再加4%氢氧化钠试液5 mL,振荡摇匀后用30%乙醇定容至刻度,放置15 min,在510 nm 处测定吸光度。以芦丁为标准品,得标准曲线方程为A=2.31C-0.0172(R2=0.9927),式中A:吸光度,C:芦丁质量浓度。
1.2.4 可溶性糖含量的测定 参考杨毕超等[30]的方法,稍加改进,采用苯酚-硫酸法进行测定。供试品溶液的制备与上述总黄酮供试品溶液的制备方法相同[30]。吸取0.5 mL 样液,放入10 mL 试管中,加浓硫酸5.0 mL、5%苯酚1.0 mL,40 ℃水浴中保温30 min,在490 nm 测定吸光度。以葡萄糖为标准品,得标准曲线方程为A=199.08C-1.080(R2=0.9965),式中A:吸光度,C:葡萄糖质量浓度。
采用Excel 2003 进行数据平均值、标准差及变异系数分析;利用SAS 9.2 软件进行单因素方差分析(ANOVA)和Duncan 法检验(a=0.05)均值差异显著性,并进行相关性分析(Pearson 法)以及主成分与聚类分析。依据方差累计贡献率≥85%的标准提取主成分,以各主成分对应的方差贡献率作为权重,由主成分得分和对应权重相乘求和构建综合评价函数[31]。主成分聚类分析采用类平均系统聚类法。
综合分析盛花期(舌状花开70%~80%)的植株产量性状指标,是筛选高产品种的基础。由表2 知,不同产地药用菊花品种的产量性状变异系数不同。其中单株花头数变异系数最大,为39.03%,其次为单株花头干重、单株花头鲜重,变异系数分别为34.04%、28.89%,变异丰富,具有选择潜力,可作为高产品种的选育目标。但不同产地品种间的主要产量性状差异显著(P<0.05)。如表2 所示,枣庄引种红心菊(Z1)后的单株花头数、单株花头鲜重和单株花头干重都最高,且显著高于不同产地的其他品种(P<0.05),分别为496.50 个、472.18 g 和104.27 g,其次是射阳产地红心菊(S1)分别为468.50 个、413.55 g、67.93 g,表明不同产地的红心菊比较高产;单株花头数是决定药用菊花单株花头干重的主要因素(r=0.800),这与盛蒂等[32]前人研究结果一致;而枣庄引种的黄山贡菊(Z4)则显著低于上述样本(P<0.05),分别为159.38 个、182.44 g、35.22 g,表现低产。另外,枣庄引种怀小黄菊(Z8)后的花序直径、单花鲜重和单花干重较高,且显著高于其他品种(P<0.05),分别为47.66 mm、1.68 g 和0.29 g,其次是枣庄引种大洋菊(Z3)后的花序直径、滁菊(Z5)的单花鲜重与单花干重,分别为46.54 mm、1.62 g、0.29 g;而枣庄引种黄山贡菊(Z4)后的花序直径、射阳产红心菊(S1)的单花鲜重、亳州产小亳菊(S6)的单花干重相对较低,分别为24.64 mm、0.89 g、0.14 g。
表2 不同产地药用菊花品种的产量指标分析结果Table 2 Analysis of yield index of medicinal C.morifolium varieties from different areas
由表3 知,不同产地药用菊花品种的药效指标成分绿原酸、3,5-DCQA、木犀草苷均已达到2020年版《中国药典》规定的标准含量[1]。但其功能成分含量变异系数不同。其中,木犀草苷变异系数最大,为63.08%;其次是木犀草素、芹菜素的变异系数,均在53%以上。且不同产地药用菊花品种间的药效指标成分含量差异显著(P<0.05)。其中,滁州产滁菊(S5)的绿原酸、3,5-DCQA 含量最高(分别为3.75%、8.07%),显著高于其他品种(P<0.05);其次是枣庄引种的怀小白菊(Z7)含量较高(分别为3.74%、6.45%);而歙县产黄山贡菊(S4)的含量最低(分别为1.09%、1.71%)。枣庄引种早小洋菊(Z2)后的木犀草苷、芹菜素和枣庄引种红心菊(Z1)后的木犀草素含量最高(分别为3.49%、0.015%、0.49%);而亳州产小亳菊(S6)的木犀草苷、歙县产黄山贡菊(S4)的木犀草素、芹菜素含量最低(分别为0.19%、0.02%、0.001%)。总黄酮和可溶性糖也是反映药用菊花药茶两用功能的主要成分,且原产地与引种地药用菊花品种间存在显著差异(P<0.05)。其中,桐乡产早小洋菊(S2)、滁州产滁菊(S5)的总黄酮和可溶性糖含量较高(分别为16.54%、25.10%;16.08%、23.18%);而枣庄引种后的小亳菊(Z6)的总黄酮、黄山贡菊(Z4)的可溶性糖含量最低(分别为6.81%、12.63%),约低出2 倍。综上表明,滁州产滁菊、枣庄引种的怀小白菊药效功能较佳,适于药用;桐乡原产地与枣庄引种地的早小洋菊为适于药茶两用的杭菊类型;而原产地与引种地的小亳菊、黄山贡菊的药茶两用功能总体表现较差。这与杨朝帆等[33]的研究结果基本一致,而与陈韵姿等[34]的研究结果(亳州亳菊药效较优)不尽相同。这种不同产地药用菊花品种品质指标间的差异,可能与品种特性、产地环境、栽培技术和加工方法等综合因素的影响有关[33,35]。
表3 不同产地药用菊花品种功能成分含量的分析结果(%)Table 3 Analysis on functional components of medicinal C.morifolium varieties from different areas (%)
由表4 可知,盛花期不同产地药用菊花品种的13 个产量与品质指标性状,存在显著或极显著相关性。其中,花序直径与单花鲜重、单株花头鲜重、木犀草素、芹菜素呈显著正相关(P<0.05);单株花头数与单株花头鲜重、单株花头干重,单花鲜重与单花干重,单株花头鲜重与单株花头干重,均呈极显著正相关(P<0.01);单花干重与绿原酸、3,5-DCQA,绿原酸与3,5-DCQA 均呈极显著正相关(P<0.01);而单花鲜重与3,5-DCQA 则呈显著正相关(P<0.05);芹菜素与绿原酸、3,5-DCQA、木犀草素均呈极显著正相关(P<0.01);木犀草苷与绿原酸、芹菜素,木犀草素与绿原酸、3,5-DCQA 均呈显著正相关(P<0.05);可溶性糖与总黄酮呈显著正相关(P<0.05),而与单花干重、绿原酸呈显著负相关(P<0.05)。可见,不同产地药用菊花品种产量性状和品质指标间密切相关,综合评价不同产地药用菊花品种的产量高低与品质优劣,应进行主成分降维分析。
表4 不同产地药用菊花品种产量与品质指标间的相关性分析Table 4 Correlation analysis between yield and quality indexes of medicinal C.morifolium varieties from different areas
主成分分析是通过降维分析,用少量综合评价指标来代替原来多个指标的大部分重要信息,实现数据的简化[36]。而主成分载荷矩阵可以反映不同品种产量与品质性状指标对此主成分负荷的相对大小和作用方向,即该指标对主成分影响的程度,一般以0.5 原则为判断依据[37]。因此,对原产地与引种地各8 个药用菊花品种的13 个产量与品质的性状指标进行主成分分析表明(表5),前4 个主成分的特征值均大于1,累计贡献率达到84.34%,基本解释了药用菊花品种产量和品质性状指标的绝大部分信息,为此提取前4 个主成分。其中,第1 主成分的特征根为5.236,方差贡献率为40.27%,决定第1 主成分的主要是绿原酸、3,5-DCQA 和芹菜素,为衡量药用菊花品种的主要药效成分,可称为药效因子。第2 主成分的特征根为2.846,方差贡献率为21.89%,决定第2 主成分的主要是单株花头数、单株花头鲜重、单株花头干重,单株花头数的特征向量值最大,可称为高产因子。第3 主成分的特征根为1.637,方差贡献率为12.59%,决定第3 主成分的主要是总黄酮和可溶性糖,且总黄酮特征向量值较大,主要影响品种的药用或茶用功能,可称为总黄酮因子。第4 主成分的特征根为1.245,方差贡献率为9.58%,决定第4 主成分的主要是花序直径和木犀草苷,花序直径的特征向量负值较大,主要影响品种的鲜重和药效功能,可称为花径因子。
表5 4 个主成分的特征向量、特征根和累计方差贡献率Table 5 Characteristic vector,characteristic root and cumulative variance contribution rate of four principal components
比较不同产地药用菊花品种的多性状指标,需对其原始数据进行标准化处理,以消除不同单位和数据量纲的影响[38]。根据主成分的特征向量(表5)和标准化后的数据,计算药用菊花品种产量与品质性状的主成分得分,以各主成分对应的方差贡献率为权重,对主成分得分和相应的权重进行线性加权,构建主成分综合评价模型[31]:F=0.4027F1+0.2189F2+0.1259F3+0.0958F4,由综合评价模型计算出不同产地药用菊花品种的产量与品质的综合得分,并依据综合得分进行不同产地药用菊花品种排序(表6)。综合得分越高,表明该产地药用菊花品种产量与品质的综合评价越好。由表6 可知,原产地与引种地的各8 个药用菊花品种产量与品质的综合得分及其优良度排序结果显示:枣庄引种的红心菊(Z1)、早小洋菊(Z2)、滁菊(Z5)综合得分较高,依次为0.840、0.809、0.459。而原产地与引种地的小亳菊与黄山贡菊的综合得分偏低。这种差异可能与品种遗传特性、产地环境和栽培技术等因素有关[33,35]。
表6 不同产地药用菊花产量与品质指标的主成分得分、品种综合得分及优良度排序Table 6 Main component score,variety comprehensive score and fine degree ranking of yield and quality indexes of medicinal C.morifolium from different areas
为考察不同产地药用菊花品种品质指标的优劣,参照上述主成分分析与综合评价的原理与方法,构建主成分综合评价的数学模型:F=0.5193F1+0.2187F2+0.1218F3,计算品种品质的综合得分,并对其进行优良度排序。结果(表7、表8)表明,不同产地药用菊花品种品质的综合得分排在前3 位的依次为:枣庄早小洋菊(Z2)、滁州产滁菊(S5)、枣庄怀小白菊(Z7)。由表7 可知,3 个主成分中反映菊花药茶两用功能的绿原酸、木犀草苷、总黄酮和可溶性糖的特征向量绝对值较大,该PCA 结果与其前述功能成分含量差异显著性分析结果(表3)一致。因此,滁州产滁菊(S5)、枣庄怀小白菊(Z7)因药效指标成分(绿原酸、3,5-DCQA)含量较高,应开发入药;枣庄早小洋菊(Z2)为品质指标综合评价优良的杭菊类型,一般以茶饮为主、兼作药用[34]。
表7 3 个主成分的特征向量、特征根和累计方差贡献率Table 7 Characteristic vector,characteristic root and cumulative variance contribution rate of three principal components
表8 不同产地药用菊花品质指标的主成分得分、品种综合得分及优良度排序Table 8 Main component score,variety comprehensive score and fine degree ranking of quality indexes of medicinal C.morifolium from different areas
以13 个产量与品质性状指标为依据,对16 个不同产地药用菊花样品在欧氏距离上进行类平均距离法聚类分析。其中,基于不同品种样品的Q 型聚类结果(图1)表明,在欧氏平方距离为0.9 时,可将不同产地药用菊花品种分为5 大类:第Ⅰ类为枣庄红心菊(Z1),属射阳杭白菊类型,其综合评价得分最高,为优良的高产品种。第Ⅱ类是综合评价较好的枣庄引种地品种类型,包括早小洋菊(Z2)、滁菊(Z5)、大洋菊(Z3)、怀小白菊(Z7)、怀小黄菊(Z8)。第Ⅲ类是滁州滁菊(S5),药效指标成分、总黄酮和可溶性糖含量较高,应以药用为主,兼顾茶用。第Ⅳ类为枣庄引种地的黄山贡菊(Z4),表现低产,综合评价得分偏低,以茶饮为主。第Ⅴ类是综合评价得分较低的类型,包括原产地的湖北大洋菊(S3)、桐乡早小洋菊(S2)、射阳红心菊(S1)、温县怀小黄菊(S8)与怀小白菊(S7)、枣庄引种地的小亳菊(Z6)、歙县黄山贡菊(S4)、亳州小亳菊(S6)。可见Q 型聚类结果与其PCA 综合评价排序结果(表6)一致,这也反映了我国五大药用菊花的产地起源、亲缘关系及其药茶用途等状况。
图1 不同产地药用菊花品种样品的Q 型聚类Fig.1 Q-type cluster analysis of samples of medicinal C.morifolium varieties from different areas
基于不同指标的R 型聚类结果(图2)表明,在欧氏平方距离为0.8 时,可将不同产地药用菊花的13 个产量与品质指标分为4 类:第Ⅰ类是花序直径,主要与药用菊花的外观品质和鲜重等有关;第Ⅱ类是单株花头数与单株花头鲜重、单株花头干重,三者具有极显著相关性,聚为一类,是高产指标;第Ⅲ类包括单花鲜重、单花干重、木犀草素、绿原酸、3,5-DCQA、芹菜素和木犀草苷7 种指标,这些指标间具有显著或极显著相关性,主要反映菊花品种的药效功能;第Ⅳ类是总黄酮和可溶性糖,二者具有显著相关性,反映菊花品种的药茶两用功能。可见R 型聚类结果与PCA 提取的4 个主成分(表5)结果相吻合。
图2 不同产地药用菊花品种指标的R 型聚类Fig.2 R-type cluster analysis of indexes of medicinal C.morifolium varieties from different areas
不同产地或同一引种地不同药用菊花品种的单株花头数、单株花头鲜重与单株花头干重等外观性状间存在显著差异,为筛选药用菊花高产品种提供了基础。研究表明,单株花头数变异系数最大,且与单株花头干重呈极显著正相关(r=0.800),是构成药用菊花产量的主要因素;其中,以枣庄红心菊单株干产量最高。因此,在药用菊花规范化种植中,可施以摘心技术,来增加花头数而提高产量。同时,不同产地或同一引种地不同药用菊花品种的功能成分含量也不同,且存在显著差异。其中,木犀草苷和木犀草素变异系数较大。滁州产滁菊的绿原酸、3,5-DCQA 的含量显著高于其他产地的药用菊花品种,总黄酮含量较高;其次是枣庄引种地早小洋菊的木犀草苷、芹菜素和枣庄引种地怀小白菊的绿原酸含量也均显著高于其他品种。这与品质成分的主成分分析结果一致:滁州产滁菊和枣庄怀小白菊的药效较优,适于药用;枣庄早小洋菊的品质功能成分综合评价优良,应以茶饮为主、兼作药用。而原产地与引种地的黄山贡菊和小亳菊则表现低产、质差。因此,药用菊花产地与其品种产量和品质有关。这种不同产地药用菊花品种产量与品质成分含量的差异,可能与不同产地药用菊花的栽培类型、生态特性、栽培技术、采收期和加工方法等因素有关,还有待进一步研究。而且,本实验应用UPLC 法同时测定药用菊花样品中绿原酸、木犀草苷、3,5-DCQA 等5 种药效成分含量的结果可行。但综合评价药用菊花的品质优劣,还应测定与分析药用菊花中芹菜苷、槲皮素、金合欢素、氨基酸、可溶性蛋白、微量元素等指标成分,以便精准评价药用菊花的药茶两用功能。
本研究所作的相关性分析、主成分分析和聚类分析结果表明,16 个不同产地来源的药用菊花品种样品的产量与品质性状间存在显著或极显著相关性,由于相关性的信息重叠性,需要对主成分进行降维分析、综合评价。因此,从13 个性状指标中提取了前4 个主成分,累计方差贡献率达到84.34%,可分别归纳为药效因子、高产因子、总黄酮因子和花径因子;综合评价得分排在前3 位的依次为枣庄引种的红心菊、早小洋菊、滁菊。结合不同产地药用菊花品种产量和品质的聚类分析结果,判定在原产地,滁州滁菊适于药用;在枣庄引种地,红心菊为优选的高产品种,早小洋菊为品质综合评价优良的品种。因此,基于主成分及聚类分析,初步构建了药用菊花品种产量和品质的综合评价体系,这对我国药用菊花品种资源评价、引种筛选与综合利用等具有实践指导意义。