王利娟 白娜娜 武阳鸽 杨佳饶
摘 要:在Dirichlet 边界条件下研究一类具有Holling IV 型功能反应函数的竞争模型平衡态正解的存在性和稳定性。利用特征值问题的主特征值得到平衡态正解存在的必要条件,通过椭圆型方程比较原理给出平衡态正解的先验估计。运用局部分歧理论和稳定性理论研究了平衡态正解的存在性和稳定性。 通过数值模型验证了平衡态正解的存在性定理。结果表明,当两竞争物种的增长率满足一定条件时,两竞争物种可以共存且共存态是稳定的。
关键词:Holling IV型功能反应函数;竞争模型;分歧理论;稳定性理论
中图分类号:O175. 26 文献标志码:A 文章编号:1009-5128(2023)05-0087-08
收稿日期:2022-12-22
基金项目:陕西省自然科学基础研究计划面上项目:两类电流体宏观连续介质模型大解的定性理论研究(2022JM-034);陕西省科技厅自然科学基础研究计划项目:具有自控能力的V-T捕食模型的Dirichlet问题研究(2018JQ1066)
作者简介:王利娟,女,山西吕梁人,宝鸡文理学院数学与信息科学学院副教授,理学博士,主要从事反应扩散方程研究;白娜娜,女,陕西榆林人,宝鸡文理学院数学与信息科学学院硕士研究生。
5 结语
本文讨论了一类具有Holling IV型功能反应函数的两种竞争的反应扩散模型。在齐次Dirichlet边界条件下,运用分歧理论分析了该模型在两个半平凡解附近,平衡态正解的局部存在性。通过线性算子的稳定性理论得到平衡态正解稳定和不稳定性的充分条件,并利用数值模拟对得到的部分结果进行了验证。该研究表明,当两竞争物种的增长率满足一定条件时,两竞争物种可以共存且共存解穩定。另外,我们的数值模拟表明,在适当远离两个半平凡解时,模型也存在平衡态正解,这说明从半平凡解处发出的局部分歧解可能延拓为全局解。
参考文献:
[1] CASTILLO-ALVINO H H,MARVA M.Group defense promotes coexistence in interference competition:The Holling type IV competitive response[J].Mathematics and Computers in Simulation,2022,198:426-445.
[2] PAO C V.Coexistence and stability of a competition-diffusion system in population dynamics[J].Journal of Mathematical Analysis and Applications,1981,83(1):54-76.
[3] BROWN K J.Spatially inhomogeneous steady state solutions for systems of equations describing interacting populations[J].Journal of Mathematical Analysis and Applications,1983,95(1):251-264.
[4] WU J H.Global bifurcation of coexistence state for the competition model in the chemostat[J].Nonlinear Analysis,2000,39(7):817-835.
[5] GUO Z M,GAO R H.Structure of positive solutions for some semilinear elliptic systems where bifurcation from infinity occurs[J].Nonlinear Analysis Real World Applications,2006,7(1):109-123.
[6] HE X Q,NI W M.The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system I:heterogeneity vs.homogeneity[J].Journal of Differential Equations,2013,254(2):528-546.
[7] JIANG H,WU J,WANG L,et al.Qualitative Analysis for a Competition Model with B-D Functional Response and Numerical Simulation[J].Numerical Methods for Partial Differential Equations,2014,30(5):1575-1594.
[8] SMOLLER J.Shock waves and reaction-diffusion equations[M].New York:Springer-Verlag,1983.
[9] CRANDALL M G,RABINOWITZ P H.Bifurcation,perturbation of simple eigenvalues and linearized stability[J].Arch. Rat.Mech. Anal,1973,52(2):161-180.
[10] CRANDALL M G,RABINOWITZ P H.Bifurcation from simple eigenvalues[J].Functional Analysis,1971,8(2):321-340.
【責任编辑 牛怀岗】
Existence and Stability of Positive Solutions for a Competing Model with Type Holling IV Functional Response
WANG Lijuan, BAI Nana, WU Yangge, YANG Jiarao
(School of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji 721013, China)
Abstract: The existence and the stability of steady-state positive solutions of a competition model with Holling type IV functional response are studied under Dirichlet boundary conditions. The necessary conditions for the existence of the steady-state positive solution of the model are obtained by using the principal eigenvalue of the eigenvalue problem, and a priori estimate of the steady-state positive solution is given by using the comparison principle of the elliptic equation. The existence and the stability of steady-state positive solutions of the model are studied by using local bifurcation theory and stability theory. The existence theorem of steady-state positive solution is verified by numerical simulation. The results show that when the growth rates of two competing species satisfy certain conditions, the two competing species can coexist and the coexistence state is stable.
Key words:Holling IV functional response; competition model; bifurcation theory; stability theory