甘蔗茎叶的化学成分及抗氧化活性研究

2022-12-30 06:58娄红波王先宏何丽莲李富生
广西植物 2022年11期
关键词:分子式硅胶甘蔗

娄红波, 王先宏, 何丽莲, 李富生

(云南农业大学 农学与生物技术学院, 昆明 650201 )

甘蔗(Saccharumofficinarum) 系禾本科 (Gramineae) 甘蔗属 (Saccharum) 植物,分布于温带及亚热带地区,全球有100多个国家种植甘蔗。我国甘蔗资源丰富,集中种植于广西、云南、福建等地(中国科学院中国植物志编辑委员会,2014),是我国发展糖业最重要的生产原料。甘蔗榨糖后,留下的叶和渣为农业副产物,产量较大,占总量的40%,仅少量被用于加工为动物饲料和酵母 (魏纪湖等,2016),而大部分被蔗农就地焚烧,从而造成资源浪费且严重污染环境。当前,我国糖业健康稳定发展,甘蔗副产物越来越多,如何高效利用甘蔗资源一直成为社会讨论的热点和重点。

《中药大辞典》记载甘蔗味甘、性凉,具有清热、生津、解酒等功效(江苏新医学院,2006)。民间用甘蔗治疗膀胱结石、肾结石和淋病,取得了良好效果。甘蔗汁具有清热生津、消痰镇咳、治呃止呕等功能。当前研究表明甘蔗叶的化学成分主要为糖类、黄酮类、酚类、多糖等 (冯思敏,2017;侯小涛,2014),具有抗氧化、抗肿瘤、降血糖、抗炎等多种生物活性 (江恒等,2012; 桂意云等,2012;何雪梅等,2015),但其中的化合物单体活性成分报道却较少。为进一步揭示甘蔗的活性成分,更好地开发利用甘蔗副产物的药用部位,本研究以甲醇提取甘蔗茎叶部位进行系统的化学成分研究,从乙酸乙酯萃取部位分离得到22个化合物 (图1),其中2-3、7-11、14-19、21-22为首次从该植物茎叶部位分离得到,化合物12为前期 (娄红波等,2021) 分离到的已知化合物。采用DPPH法对量大的15个化合物 (1-9、11-16) 进行自由基清除能力的筛选,化合物12(5-O-二甲氧基肉桂酰基奎尼酸) 显示了较好的抗氧化活性 (IC50值为 49.58 μg·mL-1),研究结果可为后续的活性研究及资源开发利用提供物质基础。

图 1 化合物1-22化学结构Fig. 1 Chemical structures of compounds 1-22

1 仪器与材料

JP-03OS超声波仪器 (中国深圳钰洁清洗设备公司)、HC-2500Y304粉碎机 (中国武义海纳电器公司)、VG-autospec 3000型质谱仪 (英国msicromass公司)、Bruker avance-600 MHz核磁共振仪 (瑞士bruker公司)、OSB-2100旋转蒸发仪 (中国上海爱朗仪器有限公司)、Rp-18反向硅胶和凝胶Sephadex LH-20 (中国上海伊卡生物技术有限公司);SiO2(200~300目) 和硅胶板GF254(中国青岛海洋化工公司);常规试剂 (甲醇、丙酮、乙酸乙酯、石油醚等) 为国产分析纯,纯净水。

甘蔗茎叶于2018年8月采自云南省省级甘蔗昆明种质资源圃 (云南农业大学校园内,海拔1 950 m),经云南农业大学李富生教授鉴定为甘蔗(Saccharumofficinarum)。

2 实验方法

2.1 提取与分离

取干燥的甘蔗茎、叶80 kg,粉碎,甲醇浸泡1 d,回流提取,回收甲醇至浸膏状。浸膏先用水溶解,继用5% HCl调pH为3~4,乙酸乙酯连续萃取3次,回收溶剂,获得甘蔗粗提物500 g。粗提物采用硅胶柱色谱,以CHCl3-CH3OH-冰醋酸 (10∶0.1∶0.02~10∶3.5∶0.02) 进行梯度洗脱,合并色点相同部分共得8个馏份 (Fr.1-8)。Fr.1硅胶柱色谱经石油醚-乙酸乙酯-冰醋酸 (5∶0.5~1.2∶0.02) 梯度洗脱,得3个馏分 (Fr.1-A, 1-B, 1-C)。Fr.1-A 经硅胶柱色谱用石油醚-丙酮-冰醋酸 (5∶0.5∶0.02)和Sephadex LH-20 (CHCl3-MeOH 1∶1) 进行反复纯化,得到化合物1(0.43 g)、2(0.58 g)、3(0.33 g)、4(0.19 g)、5(0.38 g)。Fr.1-B反复过硅胶柱色谱CHCl3-MeOH-冰醋酸 (10∶0.1∶0.01) 分离,以Sephadex LH-20 (CHCl3-CH3OH 1∶1) 反复纯化,得化合物6(0.32 g)、7(0.87 g)。Fr.1-C 经硅胶柱色谱CHCl3-MeOH-冰醋酸 (10∶0.1∶0.02) 梯度洗脱,用Rp-18硅胶甲醇-水体系 (5∶95~90∶10) 分离纯化,得到化合物8(0.29 g)、9(0.20 g)、10(0.05 g)、11(0.33 g)。Fr.4经硅胶柱色谱CHCl3-MeOH-冰醋酸 (10∶0.3∶0.02) 反复分离纯化,得到化合物12(0.38 g)。Fr.6经柱色谱Rp-18硅胶甲醇-水系统 (5∶95~80∶20) 梯度洗脱,用Sephadex LH-20 (CHCl3-CH3OH 1∶1) 反复纯化,得到化合物13(0.19 g)、14(0.24 g)、15(0.22 g)。Fr.7经硅胶柱色谱以石油醚-乙酸乙酯-冰醋酸 (5∶5.0∶0.02) 梯度洗脱,得3个馏分(Fr.7-A, 7-B, 7-C)。Fr.7-A 经柱色谱Sephadex LH-20 (CHCl3-MeOH 1∶1) 分离,以Rp-18硅胶甲醇-水体系 (30∶70~70∶20) 梯度洗脱,得到化合物16(0.17 g)、17(0.025 g)。Fr.7-B经硅胶柱色谱用CHCl3-MeOH-冰醋酸 (10∶0.8∶0.02) 洗脱,反复过柱色谱Sephadex LH-20 (CHCl3-MeOH 1∶1),得化合物18(0.057 g)、19(0.076 g)、20(0.055 g)。Fr.7-C 经柱色谱以Rp-18硅胶甲醇-水体系 (30∶70~80∶20) 梯度洗脱,进行反复硅胶柱层析等色谱技术分离纯化,得到化合物21(0.04 g)、22(0.068 g)。

2.2 采用 DPPH法测定化合物清除自由基的能力

高含量的15个化合物(1-9、11-16),分别用无水乙醇稀释至所需浓度,DPPH用无水乙醇配成0.2 mmol·L-1的溶液备用。分别将100 μL各浓度测试化合物溶液 (1 000、500、250、125、62.5、31.25、15.625 μg·mL-1) 和100 μL DPPH溶液加入到96孔板中,轻轻混匀,室温下避光静置反应30 min后于517 nm波长测定其吸光度As,同时测定100 μL DPPH溶液与100 μL无水乙醇混合后的吸光度Ab,以及200 μL无水乙醇的吸光度值Aref。按以下公式计算各化合物对DPPH自由基的清除率,并用Origin软件计算IC50值。

I(%)=[(As-Aref)-(Ab-Aref)]/(Ab-Aref)×100%。

式中:I表示DPPH自由基清除率;As表示测试样本和DPPH混合溶液OD值;Ab表示DPPH和无水乙醇混合溶液OD值;Aref表示无水乙醇OD值。

3 结果与分析

3.1 结构鉴定

化合物1白色粉末。ESI-MSm/z: 123.1 [M+H]+,分子式为C7H6O2。1H-NMR (600 MHz, CD3OD)δ: 9.75 (1H, s, H-4), 7.75 (2H, s, H-2,6), 6.91 (2H, m, H-3, 5);13C-NMR (150 MHz, CD3OD)δ: 192.8 (C-6), 165.2 (C-4), 133.4 (C-1), 130.3 (C-2, 6), 116.9 (C-3, 5)。以上数据与文献 (李小辉等,2022) 基本一致,故鉴定为对羟基苯甲醛 (p-hydroxybenzaldehyde)。

化合物2白色针状物质。ESI-MSm/z: 179.2 [M+H]+,分子式为C10H10O3。1H-NMR (600 MHz, CD3OD)δ: 7.57 (1H, d,J= 15.1 Hz, H-7), 7.41 (2H, dd,J= 6.1, 1.7 Hz, H-2, 6), 6.78 (2H, dd,J= 6.5, 1.7 Hz, H-3, 5), 6.28 (1H, d,J= 15.3 Hz, H-8), 3.73 (3H, s, -OCH3);13C-NMR (150 MHz, CD3OD)δ: 169.7 (-COOH), 161.2 (C-4), 146.5 (C-7), 131.1 (C-2, 6), 127.1 (C-1), 116.8 (C-3, 5), 114.9 (C-8), 51.9 (-OCH3)。以上数据与文献 (周媛媛等,2020) 基本一致,故鉴定为对甲氧基桂皮酸 (p-methoxy-cinnamic acid)。

化合物3白色块状。ESI-MSm/z: 135.0 [M-H]-,分子式为C8H8O2。1H-NMR (600 MHz, CD3OD)δ: 9.75 (1H, s, H-4), 7.75 (2H, s, H-2,6), 6.91 (2H, m, H-3, 5);13C-NMR (150 MHz, CD3OD)δ: 192.8 (C-1), 165.2 (C-4), 133.2 (C-2, 6), 115.9 (C-3, 5)。以上数据与文献 (黄青兰等, 2017) 基本一致,故鉴定为4-甲氧基苯甲醛 (4-methoxybenzaldehyde)。

化合物4白色粉末。ESI-MSm/z: 151.2 [M-H]-,分子式为C8H8O3。1H-NMR (600 MHz, CD3OD)δ: 9.71 (1H, s, -CHO), 7.42 (1H, dd,J= 8.6, 1.3 Hz, H-6), 7.41 (1H, d,J= 1.5 Hz, H-2), 6.92 (1H, d,J= 8.2 Hz, H-5), 6.90 (1H, brs, -OH), 3.87 (3H, s, -OCH3);13C-NMR (150 MHz, CD3OD)δ: 192.8 (-CHO), 155.4 (C-4), 149.9 (C-3), 130.3 (C-1), 128.1 (C-6), 116.4 (C-2), 111.2 (C-5), 56.4 (-OCH3)。以上数据与文献 (吴美婷等,2021) 基本一致,故鉴定为香草醛 (vanillin)。

化合物5白色粉末。ESI-MSm/z: 177.2 [M-H]-,分子式为C10H10O3。1H-NMR (600 MHz, CD3OD)δ: 7.60 (1H, d,J= 16.2 Hz, H-3), 7.58 (2H, d,J= 8.4 Hz ,H-5, 9), 6.79 (2H, d,J= 8.6 Hz, H-6, 8), 6.78 (1H, d,J= 15.8 Hz, H-2), 3.29 (3H, s, -OCH3);13C-NMR (150 MHz, CD3OD)δ: 169.7 (C-9), 161.3 (C-4), 146.5 (C-7), 133.6 (C-2), 131.1 (C-6), 127.1 (C-1), 116.8 (C-3′), 116.8 (C-5′), 114.9 (C-8), 51.9 (-OCH3)。以上数据与文献 (El-kader et al., 2020) 基本一致,故鉴定为4-羟基肉桂酸甲酯 (4-hydroxy-cinnamic acid methylester)。

化合物6白色块状物质。ESI-MSm/z: 137.1 [M-H]-,分子式为C7H6O3。1H-NMR (600 MHz, CD3OD)δ: 7.85 (2H, d,J= 8.6 Hz ,H-2, 6), 6.79 (2H,d,J= 8.4 Hz ,H-3, 5);13C-NMR (150 MHz, CD3OD)δ: 170.1 (C-7), 163.3 (C-4), 132.9 (C-2, 6), 122.7 (C-1), 116.0 (C-3, 5)。以上数据与文献 (任刚等,2020) 基本一致,故鉴定为对羟基苯甲酸 (p-hydroxybenzoic acid)。

化合物7白色粉末。ESI-MSm/z: 197.2 [M-H]-,分子式为C13H10O2。1H-NMR (600 MHz, CD3OD)δ: 9.76 (1H, s, H-6), 7.78 (2H, d,J= 7.8 Hz ,H-3, 5), 7.75 (2H, m,H-2′, 6′), 6.91~7.23 (3H, t,J= 7.2 Hz, H-3′, 4′, 5′), 6.89 (1H, d,J= 8.5 Hz, H-2), 6.37 (1H, d,J= 7.8 Hz, H-4′);13C-NMR (150 MHz, CD3OD)δ: 192.8 (C-7), 165.2 (C-6), 158.8 (C-1′), 133.4 (C-3′, 5′), 130.4 (C-2, 4), 129.0 (C-1), 116.9 (C-3, 5), 116.8 (C-1), 115.8 (C-4′), 104.8 (C-2′, 6′)。以上数据与文献 (Ang et al., 2014) 基本一致,故鉴定为 (2-羟基苯基)(苯基)甲酮 [(2-Hydroxyphenyl)(phenyl)methanone]。

化合物8白色结晶物质。ESI-MSm/z: 135.2 [M-H]-,分子式为C8H8O2。1H-NMR (600 MHz, CD3OD)δ: 7.25 (2H, br.s, H-2′, 6′), 6.67 (1H, s, H-3), 6.49 (1H, s, H-6), 6.32 (1H, s, H-8), 3.97 (6H, s, 2CH3);13C-NMR (150 MHz, CD3OD)δ: 192.8 (-COOH), 166.1 (C-1), 133.5 (C-3, 5), 128.7 (C-4), 116.9 (C-2, 6), 30.8 (-CH3)。以上数据与文献 (钱群刚等,2019) 基本一致,故鉴定为对甲基苯甲酸 (p-methylbenzoic acid)。

化合物9淡黄色块状。ESI-MSm/z: 195.2 [M+H]+,分子式为C10H10O4。1H-NMR (600 MHz, CD3OD)δ: 7.52 (1H, d,J= 17.1 Hz, H-7), 7.03 (1H, d,J= 2.2 Hz, H-2), 6.89 (1H, dd,J= 8.7, 2.1 Hz, H-6), 6.81 (1H, d,J= 8.3 Hz, H-5), 6.27 (1H, d,J= 16.5 Hz, H-8), 3.88 (3H, s, -OCH3);13C-NMR (150 MHz, CD3OD)δ: 169.9 (C-9), 149.6 (C-4), 146.5 (C-3), 146.1 (C-7), 127.9 (C-6), 127.3 (C-1), 116.6 (C-8), 115.2 (C-5), 115.0 (C-2), 53.7(-OCH3)。以上数据与文献 (Hori et al., 2021) 基本一致,故鉴定为咖啡酸甲酯 (caffeic acid methyl ester)。

化合物10白色粉末。ESI-MSm/z: 187.1 [M-H]-,分子式为C7H8O6。1H-NMR (600 MHz, CD3OD)δ: 6.91 (1H, s, H-4), 3.84 (2H, s, H-2), 3.71 (3H, s, 1-OCH3);13C-NMR (150 MHz, CD3OD)δ: 172.5 (C-1), 168.9 (C-6), 168.3 (C-5), 141.2 (C-3), 130.7 (C-4), 52.5 (1-OCH3), 33.6 (C-2)。以上数据与文献 (Xu et al., 2017) 基本一致,故鉴定为乌头酸A (aconitate A)。

化合物11白色粉末物质。ESI-MSm/z: 225.0 [M+Na]+,分子式为C8H10O6。1H-NMR (600 MHz, CD3OD)δ: 6.93 (1H, s, H-4), 3.82 (2H, s, H-2), 3.78 (3H, s, 1-OCH3), 3.67 (3H, s, 5-OCH3);13C-NMR (150 MHz, CD3OD)δ: 172.5 (C-1), 168.8 (C-6), 167.3 (C-5), 142.1 (C-3), 129.3 (C-4), 52.6 (5-OCH3), 52.4 (1-OCH3), 33.6 (C-2)。以上数据与文献 (Xu et al., 2017) 基本一致,故鉴定为乌头酸E (aconitate E)。

化合物12白色固体。ESI-MSm/z: 381.1 [M-H]-,经硅胶板TLC与其对照品对照,以氯仿-甲醇-冰醋酸 (8∶1.5∶0.02, Rf=0.5)、石油醚-乙酸乙酯-冰醋酸 (6∶4∶0.02, Rf=0.55)和石油醚-丙酮-冰醋酸 (7∶3∶0.02: Rf=0.6) 为展开剂,经硫酸乙醇溶液显色,105 ℃至斑点清晰,结果在与对照品相应位置上显示相同颜色斑点。故鉴定该化合物为5-O-二甲氧基肉桂酰基奎尼酸 (5-O-dimethoxycinnamoylquinic acid) (娄红波等,2021)。

化合物13黄色块状物质。ESI-MSm/z: 303.2 [M+H]+,分子式为C15H10O7。1H-NMR (600 MHz, CD3OD)δ: 7.78 (2H, d,J= 2.2 Hz, H-2′), 7.59 (1H, dd,J= 8.4, 2.1, Hz, H-6′), 6.85 (1H, d,J= 8.2 Hz, H-5′), 6.31(1H, d,J= 2.2 Hz, H-8), 6.22 (1H, d,J= 2.0 Hz, H-6);13C-NMR (150 MHz, CD3OD)δ: 177.2 (C-4),165.1 (C-7), 161.4 (C-5), 155.3 (C-9), 146.9 (C-4′), 146.7 (C-2), 144.7 (C-3′), 136.7 (C-3), 121.6 (C-1′), 118.7 (C-6′), 115.6 (C-5′), 115.3 (C-2′), 98.3 (C-6), 94.1 (C-8)。以上数据与文献 (闫建昆等,2021) 基本一致,故鉴定为槲皮素 (quercetin)。

化合物14黄色块状。ESI-MSm/z: 433.4 [M-H]-,分子式为 C20H18O11。1H-NMR (600 MHz,CD3OD)δ: 8.68 (2H, d,J= 2.1 Hz, H-2′), 8.12 (1H, d,J= 8.4, 1.8 Hz, H-6′), 7.41 (1H, d,J= 8.2, H-5′), 6.92 (1H, d,J=1.8, H-8), 6.75 (1H, d,J= 1.6 Hz, H-6), 5.60 (1H, d,J= 7.1 Hz, H-1″);13C-NMR (150 MHz, CD3OD)δ: 177.9 (C-4), 163.6 (C-7), 161.5 (C-5), 156.9 (C-9), 156.5 (C-2), 148.7 (C-4′), 147.0 (C-3′), 135.1 (C-3), 121.3 (C-1′), 116.9 (C-5′), 116.5 (C-2′), 106.3 (C-10), 102.0 (C-1″), 99.5 (C-6), 94.3 (C-8), 74.3 (C-3″), 72.2 (C-2″), 69.0 (C-4″), 67.1 (C-5″)。以上数据与文献 (韩荣欣等,2020) 基本一致,故鉴定为槲皮素-3-O-α-L-阿拉伯糖苷 (quercetin-3-O-α-L-arabinoside)。

化合物15淡黄色块状。ESI-MSm/z: 463.4 [M-H]-,分子式为C21H20O12。1H-NMR (600 MHz, CD3OD) δ: 8.43 (1H, d,J= 2.0 Hz, H-2′), 8.10 (1H, dd,J= 8.2, 2.1 Hz, H-6′), 7.22 (1H, d,J= 8.5 Hz, H-5′), 6.67 (1H, d,J= 2.3 Hz, H-8), 6.64 (1H, d,J= 2.2 Hz, H-6), 6.13 (1H, d,J= 7.9 Hz, H-1″),13C-NMR (150 MHz, CD3OD) δ: 178.7 (C-4), 166.4 (C-7), 162.9 (C-5), 157.9 (C-9), 157.5 (C-2), 150.6 (C-4′), 146.5 (C-3′), 135.3 (C-3), 122.6 (C-1′), 122.2 (C-6′), 117.6 (C-2′), 116.0 (C-5′), 105.5 (C-10), 105.1 (C-1″), 99.7 (C-6), 94.5 (C-8), 77.9 (C-5″), 75.3 (C-3″), 73.1 (C-2″), 69.4 (C-4″), 62.6 (C-6″)。以上数据与文献 (李孟等,2019) 基本一致,故鉴定为槲皮素-3-O-β-D-吡喃半乳糖苷 (quercetin-3-O-β-D-galactopyranoside)。

化合物16透明针状物质。ESI-MSm/z: 531.5 [M+H]+,分子式为C30H58O5S。1H-NMR (600 MHz, CD3OD)δ: 4.12 (2H, t,J= 7.1 Hz, H-1″, 1‴), 3.08 (1H, m, H-2′), 2.93 (1H, m, H-2), 2.83 (2H, m, H-3, 3′), 0.87 (2H, t t,J= 7.7, 5.6 Hz, H-12″, 12‴);13C-NMR (150 MHz, CD3OD)δ: 171.3 (C-1, 1′), 65.5 (C-1″, 1‴), 47.2 (C-2, 2′), 27.1 (C-3, 3′), 31.9 (C-11″, 11‴), 29.7 (C-10″, 10‴), 29.6 (C-9″, 9‴), 29.5 (C-8″, 8‴), 29.4 (C-7″, 7‴), 29.3 (C-6″, 6‴), 29.2 (C-5″, 5‴), 28.5 (C-4″, 4‴), 25.9 (C-3″, 3‴), 22.7 (C-2″, 2‴), 14.1 (C-12″, 12‴)。以上数据与文献 (Malak et al., 2013) 基本一致,故鉴定为硫代二丙酸双十八烷基酯 [didodecyl thiodipropionate (propionic acid, 3,3-sulfinyl di-1,1′-didodecyl ester)]。

化合物17白色粉末。ESI-MSm/z: 357.3 [M+H]+,分子式为C20H20O6。1H-NMR (600 MHz, CD3OD)δ: 7.28 (1H, d,J= 8.2 Hz, H-2′), 6.99 (1H, d,J= 2.1Hz, H-5′), 6.78 (1H, d,J= 1.8 Hz, H-2), 6.75 (1H, dd,J= 1.8, 8.4 Hz, H-6), 6.72 (1H, d,J= 1.8 Hz, H-5), 3.86 (3H, s, 3-OCH3), 3.65 (3H, s, 3′-OCH3), 2.65 (2H, t,J= 7.5 Hz, H-7′);13C-NMR (150 MHz, CD3OD)δ: 178.7 (C-9′), 148.5 (C-3), 147.3 (C-3′), 146.2 (C-4), 145.9 (C-4′), 136.7 (C-1), 133.6 (C-6′), 127.6 (C-1′), 123.2 (C-6), 117.6 (C-5′), 115.9 (C-5), 114.1 (C-2), 112.9 (C-2′), 72.7 (C-9), 56.4 (4-OCH3), 56.3 (4′-OCH3), 50.2 (C-8′), 47.0 (C-7), 41.6 (C-8), 30.7 (C-7′)。以上数据与文献 (Fedorova et al., 2016) 基本一致,故鉴定为α-conidendrin。

化合物18无色固体物质。ESI-MSm/z: 361.4 [M+H]+,分子式为 C20H24O6。1H-NMR (600 MHz, CD3OD)δ: 6.99 (1H, d,J= 1.8 Hz, H-2′), 6.87 (1H, dd,J= 1.8, 8.3 Hz, H-6′), 6.77 (1H, d,J= 1.8 Hz, H-5′), 6.71 (1H, s, H-6), 6.70 (1H, brs, H-4), 5.47 (1H, d,J= 6.6 Hz, H-2), 3.88 (3H, s, 7-OCH3), 3.83/3.74 (2H, m, H-3a/3a′), 3.66 (3H, s, 3′-OCH3), 3.58 (2H, t,J= 6.5 Hz, H-5c), 3.49 (1H, dt,J= 6.4, 6.3 Hz, H-3), 2.65 (2H, t,J= 7.5 Hz, H-5a), 1.80 (2H, tt,J= 6.6, 7.7 Hz, H-5b);13C-NMR (150 MHz, CD3OD)δ: 149.0 (C-3′), 147.4 (C-4′), 147.4 (C-7a), 145.1 (C-7), 136.9 (C-5), 134.8 (C-1′), 129.8 (C-4a), 119.7 (C-6′), 117.9 (C-4), 116.1 (C-5′), 114.0 (C-6), 110.5 (C-2′), 89.0 (C-2), 64.9 (C-3a/a′), 62.2 (C-5c), 56.7 (7-OCH3), 56.3 (3′-OCH3), 55.4 (C-3), 35.8 (C-5b), 32.9 (C-5a)。以上数据与文献 (Jia et al., 2017) 基本一致,故鉴定为rel-(2α,3β)-7-O-methylcedrusin。

化合物19白色粉末。ESI-MSm/z: 383.2 [M+H]+,分子式为C18H22O9。 1H-NMR (600 MHz, CD3OD) δ: 7.55 (1H, d,J= 15.8 Hz, H-7), 7.28 (1H, d,J= 1.3 Hz, H-2), 7.12 (1H, dd,J= 1.4, 8.1 Hz, H-6), 6.76 (1H, d,J= 8.2 Hz, H-5), 6.43 (1H, d,J= 15.8 Hz, H-8), 5.15 (1H, m, H-3′), 3.84 (4H, s, 3-OCH3, H-4′), 3.60 (1H, m, H-5′), 3.55 (3H, s, COOCH3), 2.05 (1H, dd,J= 4.2, 12.6 Hz, H-2′b), 2.04 (1H, dd,J= 5.3, 13.5 Hz, H-6′b), 1.87 (1H, dd,J= 1.5, 12.6 Hz, H-2′a), 1.83 (1H, dd,J= 2.6, 13.4 Hz, H-6′a);13C-NMR (150 MHz, CD3OD) δ: 174.2 (CO), 166.1 (C-9), 149.1 (C-4), 147.9 (C-3), 144.5 (C-7), 125.7 (C-1), 123.0 (C-6), 115.5 (C-5), 115.3 (C-8), 110.9 (C-2), 72.6 (C-1′), 70.3 (C-3′), 70.0 (C-4′), 67.8 (C-5′), 55.7 (3-OCH3), 51.5 (COOCH3), 39.1 (C-6′), 34.8 (C-2′)。以上数据与文献 (闫彦等,2017) 基本一致,故鉴定为3-O-阿魏酰奎宁酸甲酯 (3-O-Ferulylquinic acid methyl ester)。

化合物20黄色粉末。ESI-MSm/z: 285.1 [M-H]-,分子式为C15H10O6。1H-NMR (600 MHz, CD3OD) δ :12. 23 (1H, s, 5-OH), 7.42 (1H, dd,J= 8.6, 0.8 Hz, H-6′), 7.40 (1H, d,J= 1.0 Hz, H-2′), 6.96 (1H, d,J= 8.4 Hz, H-3′), 6.60 (1H, s, H-3), 6.52 (1H, d,J= 0.8 Hz, H-8), 6.20 (1H, d,J= 0. 8 Hz, H-6);13C-NMR (150 MHz, CD3OD)δ: 183.8 (C-4), 166.4 (C-7), 166.1 (C-2), 163.2 (C-9), 159.4 (C-5), 151.2 (C-4′), 147.1 (C-3′), 123.1 (C-1′), 120.3 (C-3), 116.8 (C-5′), 114.1 (C-6′), 105.3 (C-2′), 103.8 (C-10), 100.1 (C-6), 95.0 (C-8)。以上数据与文献 (Cao et al., 2021) 基本一致,故鉴定为木犀草素 (luteolin)。

化合物21黄色无定型粉末。ESI-MSm/z: 509.3 [M+H]+,分子式为C27H24O10。1H-NMR (600 MHz, CD3OD)δ: 7.48 (1H, s, H-6′), 6.70 (1H, d,J= 2.2 Hz, H-15), 6.55 (1H, d,J= 8.0 Hz, H-18), 6. 44(1H, d,J= 2.2 Hz, H-8), 6.33 (1H, d,J= 8.0 Hz, H-19), 6.18 (1H, d,J= 2.2 Hz, H-6), 3.56 (3H, s, 16-OCH3), 3.50 (1H, m, H-12), 3.24 (1H, m, H-11b), 4. 82 (1H, s, H-13), 4.05 (3H, s, 3′-OCH3), 3.72 (3H, s, 5′-OCH3), 3.61 (1H, m, H-11a), 3.20 (1H, m, H-11b)。13C-NMR (150 MHz, CD3OD)δ: 182.0 (C-4), 165.7 (C-7), 163.3 (C-5), 160.8 (C-2), 158.7 (C-9), 149.7 (C-5′), 148.9 (C-16), 147.7 (C-3′), 146.0 (C-17), 145.5 (C-4′), 136.6 (C-14), 128.8 (C-2′), 120.8 (C-19), 119.1 (C-1′), 115.9 (C-18), 112.4 (C-15), 112.0 (C-3), 105.3 (C-10), 103.8 (C-6′), 100.0 (C-6),94.9 (C-8), 62.8 (C-11), 60.9 (3′-OCH3), 56.9 (5′-OCH3), 56.3 (16-OCH3), 42.3 (C-12), 37.8 (C-13)。以上数据与文献 (肖宗雨等,2020) 基本一致,故鉴定为 (5S,6S)-5,6-dihydro-3,8,10-trihydroxy-5-(4-hydroxy-3-methoxyphenyl )-6-hydroxymethyl-2,4-dimethoxy-7H-benzo [c]xanthen-7-one)。

化合物22白色粉末。ESI-MSm/z: 381.4 [M-H]-,分子式 为C18H22O9。1H-NMR (600 MHz,CD3OD)δ: 9.59 (1H, brs, 7′-OH), 7.50 (1H, d,J= 15.6 Hz, H-3′), 7.27 (1H, d,J= 1.6 Hz, H-5′), 7.01 (1H, dd,J= 8.2, 1.6 Hz, H-9′), 6.81 (1H, d,J= 8.0 Hz, H-8′), 6.40 (1H, d,J= 15.6 Hz, H-2′), 5.49 (1H, brs, 1-OH), 5.13 (1H, dt,J= 9.2, 3.8 Hz, H-5), 4.91 (1H, brs, 4-OH), 4.83 (1H, brs, 3-OH), 3.85 (1H, overlapped, H-3), 3.84 (3H, s, 6′-OCH3), 3.68 (1H, m, H-4), 3.55 (3H, s, 7-OCH3), 2.05 (1H, dd,J= 12.7, 3.9 Hz, H-6b), 1.95 (1H, dd,J= 13.0, 5.9 Hz, H-2b), 1.86 (1H, dd,J= 12.3, 9.6 Hz, H-6a), 1.84 (1H, dd,J= 13.3, 3.1 Hz, H-2a);13C-NMR (150 MHz, CD3OD)δ:176.5 (C-7), 168.9 (C-1′), 150.4 (C-7′), 149.4 (C-6′), 146.8 (C-3′), 127.9 (C-4′), 124.1 (C-9′), 116.5 (C-8′), 116.1 (C-2′), 111.7 (C-5′), 75.3 (C-1), 73.9 (C-4), 72.7 (C-5), 68.6 (C-3), 56.4 (6′-OCH3), 52.9 (7-OCH3), 40.8 (C-2), 36.4 (C-6)。以上数据与文献 (李胜峰等,2020) 基本一致,故鉴定为5-O-阿魏酰奎宁酸甲酯 (5-O-Ferulylquinic acid methyl ester)。

3.2 DPPH法测定化合物清除自由基能力的结果

由表1可知,所测15个化合物中,仅化合物12表现出较好的抗氧化活性,IC50值为 49.58 μg·mL-1。其他化合物未显示抗氧化活性,IC50值>1 000 μg·mL-1。

表 1 DPPH法测定15个化合物的自由基清除能力Table 1 Determination of free radical scavenging abilities of 15 compounds by DPPH method

4 讨论与结论

开展农作物废弃物的再利用既是解决当前中药资源短缺的途径之一,也是实现中药资源的可持续发展的战略 (邓家刚,2010)。甘蔗作为药食两用的植物,产量巨大,主要用于榨糖,而榨糖过程产生的副产物渣和叶主要作为废物丢弃或焚烧处理。如何科学合理地实现废物再利用,是目前待解决的主要问题之一,而从化学成分的角度出发也许是主要方法之一。基于此,本文对甘蔗渣和叶进行了系统的化学成分研究,从甲醇提取物中共分离鉴定22个化合物,结构类型涉及黄酮类、酚酸类、酯类、木质素、苯丙素类等,其中5个为黄酮类、6个为酚酸类,揭示了黄酮类及酚酸类物质为甘蔗渣和叶的主要成分,基本阐明了其化学成分谱。黄酮类及酚酸类成分往往具有显著的生物活性,如灯盏花富含黄酮成分,以此开发的灯盏花素片和注射液临床用于治疗心脑血管疾病 (张雪冰,2020);柳树皮富含酚酸成分水杨酸,以此开发的水杨酸乳膏临床用于治疗脂溢性皮炎、银屑病等 (胡杏林等,2021)。本研究为获取黄酮类和酚酸类成分提供了一条途径,同时为甘蔗渣和叶的开发利用奠定了一定的化学基础。

分离鉴定的化合物中,化合物4(香草醛) 为主要高含量的核心成分。香草醛为一种重要的香味物质,在医药领域应用广泛。常作为药物合成的原料,如用于合成治疗腹泻黄连素、治疗高血压的药物L-甲基多巴制剂 (商品名Aldomet)、治疗上呼吸道感染和防治性病菌株传播的甲氧基氨基吡啶及治疗心脏病的药物罂粟碱等 (杨晓慧等,2010)。全球对香草醛需求量较大,约为1.2万t,市场供不应求。目前,香草醛的获取除来自植物外,尚有采用木质素为前体物进行化学合成。甘蔗中富含香草醛且资源丰富,生产成本相对较低,可考虑作为获取香草醛的原料,是变废为宝的一条优质途径。

自由基是导致多种疾病产生的根源,如何消除自由基,增强抗氧化能力,从植物中寻找安全有效的抗氧化物质成为当前的研究热点。魏纪湖等(2016)研究表明黄酮类和酚酸类物质,具有抗氧化、抗炎、降血脂、降血糖、抗细胞增殖等多种生理活性,被认为是潜在的外源性抗氧剂原料。为了挖掘相关活性成分,本研究采用DPPH法测定甘蔗中15个高含量化合物 (1-9、11-16)的清除自由基能力,结果表明化合物12具有较好的抗氧化活性。除了优良抗氧化活性以外,化合物12还具有相对高的含量,通过进一步加深其抗氧化活性研究,并对其进行科学分析和评价,化合物12可能成为潜在的抗氧化活性前景分子,为废弃物甘蔗渣和叶的深度开发提供了化学和药理基础。

猜你喜欢
分子式硅胶甘蔗
手术联合CO2点阵激光、硅胶瘢痕贴治疗增生性瘢痕的疗效观察
无线光电鼠标
有机物分子式确定方法探秘
甘蔗的问题
甜甜的甘蔗
硅胶刀具清洁器
功能隐形眼镜盒
寻求一类有机物规律的方法及应用
有机物分子式、结构式的确定
黑熊吃甘蔗