杜贵超,杨兆林,尹洪荣,王凤琴,陈奕阳,崔耀科
(1.西安石油大学地球科学与工程学院,陕西西安 710065;2.西安石油大学陕西省油气成藏地质学重点实验室,陕西西安 710065;3.中国石油长庆油田分公司勘探开发研究院,陕西西安 710065)
中生界延长组长73段泥页岩是鄂尔多斯盆地重要的烃源岩层系,一直是中外学者关注的焦点之一[1-3]。伴随着陆相页岩气勘探开发进程,该泥页岩段作为页岩气储层而备受重视。勘探研究结果表明,有机质富集程度是长73段页岩气富集的主要控制因素,总有机碳含量越高,含气量往往越高[4]。前人研究指出,泥页岩层系中有机碳的富集受多因素控制,适宜的古气候条件、频繁的火山活动导致富铀凝灰岩夹层发育,为湖泊低等动植物的繁盛、湖泊生产力的提高提供了有利条件[5-9];此外,厌氧与缺氧环境是有机质保存及富集的重要因素,而有机质的分布受宏观构造-沉积演化背景的控制[9]。总体而言,古地理环境与古构造环境等因素造成长73段泥页岩大面积发育,有机质丰度整体较高的特点。然而,目前尚未对有机质发育特征及富集模式进行深入研究,影响了对烃源岩非均质性和优质烃源岩分布规律的认识[10-12]。
基于鄂尔多斯盆地东南部下寺湾地区页岩气探井的岩心、测井及分析测试等资料,结合盆地区域构造演化及沉积背景分析,对长73段泥页岩储层开展系统的有机质发育特征及富集模式研究。通过刻画有机质在泥页岩层系中的赋存特征,探究有机质分布的非均质性特征,查明有机质发育与盆地构造演化及沉积环境等控制因素的耦合关系,揭示有机质富集规律,有助于深入了解该地区有机质发育特征、影响因素及演化规律,深化研究区页岩气地质特征认识,为该地区陆相页岩气“甜点”识别、资源评价等提供科学依据及理论指导。
受印支运动影响,鄂尔多斯盆地在晚三叠世已发展成为一个宽缓的大型内陆坳陷湖盆,在湖盆演化过程中,上三叠统延长组是在盆地持续拗陷和稳定沉降过程中发育的一套河流-三角洲-湖泊沉积的陆源碎屑岩系[13-16]。其中,延长组长7 油层组沉积时期,受控于鄂尔多斯盆地NW 向及NE向断裂活动增强,基底整体下沉,湖盆发育达到鼎盛期,湖盆范围扩大,水体加深,沉积了厚层的泥页岩。该时期湖盆形态仍具西陡东缓的特点,沉积中心主要位于直罗—张家湾—旦八—吴堡沿线,呈NW—SE 向展布[17-18]。鄂尔多斯盆地南部主要发育半深湖-深湖、浅湖亚相及三角洲相,半深湖-深湖亚相主要发育于吴起—甘泉一线西南区域;浅湖亚相主要发育于研究区东部及东北部的宜川—延长—安塞县等地区[4,19-20]。
下寺湾地区位于鄂尔多斯盆地陕北斜坡带南部,面积约为4 000 km2。该区三叠系延长组自下而上发育长10—长1 共10 个油层组,其中长7 油层组主要为半深湖-深湖亚相沉积,可划分为长71、长72和长73段(图1)。长73段泥页岩埋深为1 400~1 900 m,顶面构造面貌为平缓的西倾单斜,局部发育由差异压实形成的近EW 向低缓鼻状隆起,断裂不发育,坡降一般为8~10 m/km[20-21]。长73段泥页岩储层岩性主要为灰黑-黑色泥页岩与粉砂质泥岩。泥页岩也称油页岩,颜色为深黑色,页理发育,有机质含量最高,测井曲线具有低密度、高声波时差、高电阻率、高自然伽马的特征,是区域标志层;粉砂质泥岩颜色为深灰色,具有中、高自然伽马的特征,多为远距离悬浮沉积,水平层理及波纹层理普遍发育,动植物化石丰富,黄铁矿结核分布普遍。长73段泥页岩单层厚度一般为0.5~25.9 m,累积厚度最高可达45.3~62.5 m。
图1 鄂尔多斯盆地东南部构造位置及延长组综合柱状图(据文献[23]修改)Fig.1 Tectonic location and comprehensive stratigraphic histogram of Yanchang Formation in study area(Modifed by Reference[23])
样品采集 长73段沉积时期研究区靠近湖盆中心,主要为半深湖-深湖亚相,富有机质泥页岩极为发育,是鄂尔多斯盆地中生界页岩气勘探开发最早的地区。采集研究区YY1 和YY32 等7 口井钻遇的长73段泥页岩储层样品共计75块,岩性主要为黑色富有机质页岩、深灰-灰黑色页岩及少量粉砂质纹层状泥页岩,页理较发育。对75块样品开展了有机质丰度、有机质类型等有机地球化学分析测试。
测试方法 首先,利用高倍显微镜对样品进行有机质微观赋存特征观察与有机质显微组分类型鉴定。其次,分别利用CS-230碳硫分析仪、OGE-Ⅵ油气评价工作站、elementar vario EL 元素分析仪对其中的55个泥页岩样品开展总有机碳含量分析、岩石热解分析及干酪根元素分析。同时,对其中的46个样品进行氯仿沥青“A”抽提及族组分分析。所有分析测试在陕西省油气成藏重点实验室完成,样品分析精度按相关国家及行业标准执行。最后,利用手持式矿石元素分析仪(型号:Niton XL3T950)对YY1 井(1 362~1 415 m)及YY22 井(1 330~1 360 m)长73段泥页岩储层开展连续的微量元素测试,每间隔30 cm 测一个样点。该仪器可对极低含量(10-6级)至高含量(10-2)的Cu,Pb,Zn,Ag,Au,V,Ti,Fe等43 种元素进行准确测量,检测精度接近实验室级分析水平,分析结果和实验室数据相对误差约为10%[22]。
有机质丰度是评价烃源岩生烃潜力的主要标志,通常取决于烃源岩层系的沉积环境条件[1,3,13,23]。测试资料研究表明,延长组长73段泥页岩储层总有机碳含量(TOC)主要为0.85%~11.80%,平均值约为4.83%,其中80%的样品TOC值大于2%。生烃潜量(S1+S2)分布范围亦较广泛,为0.15~54.83 mg/g,平均值为9.15 mg/g,其中约70%样品的S1+S2值大于6 mg/g。氯仿沥青“A”和总烃含量较高,平均值分别为0.25%和770 μg/g,总体上为好烃源岩。
有机质类型及其热演化程度是控制烃源岩生烃能力及烃类产物差异性的关键因素,同时,页岩气的吸附速率和扩散速率也受到泥页岩储层有机质类型的影响[13,23]。干酪根元素分析及岩石热解分析表明,研究区长73段泥页岩储层有机质类型较好,总体以Ⅱ1型为主,少量样品为Ⅱ2型及Ⅲ型(图2)。有机质显微组分镜下鉴定表明,样品烃源岩母质中浮游藻类及低等水生生物含量较高,干酪根显微组分中腐泥组等有利于生烃的富氢显微组分含量较高,其中,腐泥组以腐泥无定形体和藻类为主,含量为46%~82%,平均约占干酪根总含量的65%;镜质组含量为12%~39%,平均约占干酪根总含量的20%;惰质组含量为5%~30%,平均约占干酪根总含量的15%。综合分析表明,长73段泥页岩储层干酪根类型为腐泥-腐殖型。
图2 长73段泥页岩干酪根元素分析及热解参数分析Fig.2 Element composition of kerogen and pyrolysis parameter analysis of shale reservoirs in Chang73 Member
岩心及样品镜下观察表明,有机质主要呈条带状、纹层状、薄膜状、分散块状等方式赋存于黑色泥页岩层段中,主要表现为顺层富集、大段厚层富集及大面积分布等特征(图3)。长73段半深湖-深湖亚相区域泥页岩厚度大,连续性好,有机质含量高,呈厚层富集特征(图4)。受控于垂向上岩石类型的韵律性变化,长73段泥页岩储层有机质在纵向和横向分布上非均质性较强。其中,黑色富有机质泥页岩TOC值最高,一般为2%~17.3%,平均值可达9.3%;贫有机质粉砂质页岩或纹层状粉砂质页岩TOC值一般低于2%;粉砂质夹层或火山凝灰岩有机质局部发育或不发育,TOC值一般小于1%。研究区长73段泥页岩TOC值均大于2%,且全区分布。实测TOC及测井资料TOC解释结果统计表明,研究区泥页岩TOC平均值普遍较高,其中平均值大于2%的泥页岩储层厚度较大,平均厚度为30~60 m,为页岩气的富集提供了重要物质基础(图4)。
图3 有机质微观赋存特征Fig.3 Microscopic occurrence characteristics of organic matter
图4 YY22井长7油层组TOC分布Fig.4 TOC distribution in Chang7 Member of Well YY22
沉积环境是控制烃源岩发育的主要因素之一,其中,微量元素等无机参数在反映古环境及演化信息上较有机质稳定,具有良好地保存原始地球化学信息的能力,可为烃源岩发育环境反演提供依据[24]。前人通过大量研究,建立了评价沉积古环境的元素地球化学指标,包括古气候、古盐度、氧化还原环境、古水体深度、物源供给等[24-25]。
4.1.1 古盐度分析
前人通过B 和Ca 的相对含量,Sr/Ba,Sr/Ca,Rb/K等指标对沉积物在沉积期局部古环境的盐度进行定量恢复。一般而言,Sr 元素含量为800×10-6~1 000×10-6指示咸水环境,100×10-6~300×10-6指示淡水环境[23,25]。Sr/Ba 值小于0.6 指示淡水环境,0.6~1指示半咸水环境,大于1指示咸水环境[25]。B元素含量小于60×106指示淡水环境,60×106~100×106指示半咸水环境,大于100×106指示咸水环境。Ba/Ca 值大于3.3 指示咸水环境,小于3.3 指示淡水环境[26]。Sr/Ca 值小于1 为淡水环境,大于1 为咸水环境[24]。V/Ni 值通常用于判识沉积介质盐度,V/Ni值大于1指示咸水环境,其值越大,盐度越高[27-29]。
微量元素测试结果(图5)表明,长73段Sr 元素含量为(59.83~1 278.86)×10-6,平均值为351.06×10-6。Sr/Ba值为0.2~0.76,个别样品可达0.91。Sr/Ca值为0.02~0.21,平均值为0.03。Rb/K 值为0.002~0.015,平均值为0.004。分析结果表明,长7 油层组沉积时期主要为淡水环境,局部呈微咸水特征。
图5 YY1井长73段泥页岩储层微量元素分布与古环境特征Fig.5 Distribution of trace elements and paleoenvironment characteristics of shale reservoirs in Chang73 Member of Well YY1
4.1.2 氧化还原特征分析
Th/U,V/(V+Ni),V/Cr,Ni/Co等元素比值可用于恢复古环境的氧化还原性。一般而言,Th/U 值小于4 指示还原环境,大于4 指示氧化环境[24]。V/(V+Ni)值小于0.5 指示氧化环境,大于0.5 指示还原环境[30]。亦有学者研究表明,高V/(V+Ni)值(>0.84)反映水体分层及底层水体中出现H2S 的厌氧环境;中等值(0.6~0.82)反映水体分层不强的厌氧环境;低值(0.46~0.6)反映水体分层弱的贫氧环境[31]。V/Ni 值大于1 反映还原环境,小于1 反映氧化环境[24-27,29]。
测试数据表明,长73段Th/U 值主体为0.3~1.95,个别样品为2.03~8.1,全井段Th/U 平均值为1.25。V/(V+Ni)值为0.28~0.82,平均值为0.6。V/Cr值为0.48~2.58,平均值为1.24。V/Ni 值为0.39~4.47,平均值为1.56。分析结果表明,延长组长7 油层组沉积时期以还原环境为主,局部见氧化环境。
4.1.3 古气候与古水深分析
P 的相对含量,沉积岩Co 的含量,Sr/Cu,Mg/Sr,A12O3/MgO 等指标反映沉积环境中的古气候与古水深条件。通常Sr/Cu 值为1.3~5 指示温暖潮湿的古气候,5~10 指示半潮湿-半干旱的古气候,大于10指示干热气候[8,27,32]。沉积岩的Fe/Mn 值在潮湿气候条件下较高,在干旱气候条件下较低。同时,Mg/Ca 高值可以指示干旱气候,低值则反映潮湿气候[8,33]。Zr 主要以锆石等重矿物的形式在滨浅海砂岩中富集,泥质沉积区是Zr 的低值区。因此,Zr 可作为重矿物或粗粒组分的指标,可以用来指示深水泥页岩中陆源物质加入的程度。Rb为碱土元素,化学性质活泼,易于迁移,且易被黏土矿物、云母等细粒或轻矿物吸附并富集于低能环境,有随着水体变深而增加的趋势。因此,可用Rb/Zr 值作为水体深度的定性判别指标,该值越高,说明水体越深。
实测资料表明,长73段Sr/Cu 值为0.5~36.6,平均值为6.4。分析结果表明,研究区长7 油层组沉积时期主要发育潮湿-半干旱气候。长73段Rb/Zr 值为0.13~4.92,平均值为0.62,表明长73段沉积时期水体较深且较稳定。
综合分析认为,中生界延长组长73段沉积时期,主要为潮湿-半干旱气候,该气候条件下,一方面有利于营养物质进入湖盆,促进水生生物的聚集,使湖泊具有较高的古生产力,为有机质的发育提供了重要物质基础。另一方面,潮湿气候条件下,鄂尔多斯盆地遭受了大规模的湖侵,较深的水体环境使得长73段沉积时期主要以缺氧还原环境为主,仅局部见氧化环境。整个长73段沉积时期稳定的缺氧还原环境为有机质的保存提供了重要条件。
延长组沉积时期,伴随着印支运动的影响,鄂尔多斯盆地处于拗陷阶段,经历了内陆湖盆形成、发展及鼎盛、萎缩、消亡演化的全过程[17]。延长组长8 油层组沉积时期,鄂尔多斯盆地基本形成了NW—SE 走向的湖盆沉降中心,湖盆构造最低部位在吴旗—志丹—富县一带[13,20]。至延长组长7 油层组沉积时期,受控于扬子和华北板块拼合导致的构造挤压显著增强,一方面,区域挤压背景下局部伸展作用导致盆地周缘广大范围内火山活动极为发育[5-7,34];另一方面,盆地NW 向及NE 向断裂活动增强,基底整体下沉,东北部沉降幅度相对较小,西南部沉降幅度大,湖盆发育达到鼎盛期,湖盆范围扩大,水体明显加深。前人研究表明,长7油层组沉积时期湖盆面积超过10×104km2[14-15]。盆地半深湖-深湖及浅湖亚相广泛分布,半深湖岸线基本位于定边—吴旗—志丹—甘泉—富县沿线,浅湖岸线主要位于靖边—子长—延川沿线。此时期,研究区靠近盆地沉积中心,整体为半深湖-深湖亚相沉积。综上认为,区域构造运动导致长7 油层组沉积时期湖盆可容空间增大,为有机质富集提供了重要条件。
4.3.1 浊积岩沉积事件
长73段整体发育于半深湖-深湖亚相背景下的斜坡前缘及湖盆平原沉积区,水体安静,为缺氧还原环境。在充足的物源背景下,在半深湖-深湖亚相深水坡折带附近,三角洲前缘松散的前积层在地震、火山及风暴流等触发机制下诱发滑动与滑塌,最终转换成紊流态的浊流沉积(图6)。研究区钻井岩心中广泛发育的块状层理(图6a,6b)、液化弯曲变形层理(图6c)、撕裂的泥砾(图6d)等典型沉积构造是直接证据。受湖底地形限制或重力作用变弱的影响,浊流沉积最终在远端的斜坡前缘及湖盆平原区沉积下来。由于多期砂体的侵蚀、叠加,最终形成了形态各异、规模不一的舌状或朵状复杂互层砂体。
图6 YY1井长73段沉积时期典型岩性及沉积构造特征Fig.6 Characteristics of typical lithological and sedimentary structures during Chang73 Member sedimentary period
总体而言,半深湖-深湖亚相、浅湖亚相大面积展布,极大地影响了富有机质泥页岩的发育与分布(图7)。长7 油层组沉积时期较为充足的碎屑物源输入背景下,一方面,浊积岩发育层段沉积速率往往较高,有利于有机质的快速埋藏;另一方面,半深湖-深湖亚相背景下浊积砂微相广泛发育,累积厚度为80~150 m,由此导致富有机质泥页岩平面单层厚度差异较大,一般为2~40 m。
图7 YY21—YY632井连井剖面沉积相展布特征Fig.7 Distribution characteristics of sedimentary facies in well-connected profile of Wells YY21–YY632
4.3.2 凝灰岩沉积事件
凝灰岩的发育是火山活动的产物与直接证据,前人对鄂尔多斯盆地长7 油层组凝灰岩发育特征、发育时期、物质来源及成因等开展了大量的研究工作[5-7,34],证实了长7 油层组沉积时期火山凝灰物质广泛发育,且对有机质的繁盛及保存均有重要的意义[21,35-36]。研究区钻井岩心及录井资料显示,长7油层组泥页岩层中凝灰岩广泛发育,非均质性极强,未见连片发育特征。其中,YY1 及YY22 井长73段凝灰岩夹层规模较大,YY1 井见5 层黄灰色凝灰岩夹层,厚度为0.3~0.83 m(图6g),YY22 井见2 层黄灰色凝灰岩夹层,厚度分别为0.3 和0.5 m。其余各井中局部见凝灰质纹层分散分布于富有机质泥页岩中。综合分析认为,火山凝灰岩的发育对有机质富集的影响主要体现在2 个方面:①火山凝灰岩粒度较细,岩性致密,其广泛发育往往为半深湖-深湖亚相背景下缺氧还原环境的发育提供有利条件。②火山等事件作用导致N,P,Fe,Mn 等元素丰度增加[7-8,19,21],导致水体富营养化,提高了古生产力。
长73段沉积时期,受印支运动的影响,鄂尔多斯盆地周缘断裂活动强烈,基底整体沉降,三叠系延长组沉积时期湖盆发育达到鼎盛时期。该时期潮湿-半干旱气候条件下,营养物质被河流及三角洲携带进入湖盆,促进了水生生物的聚集,使得长73段沉积时期湖泊具有较高的古生产力。特别是火山活动使得该时期沉积水体中火山灰等物质堆积,水体进一步富营养化,为有机质的富集提供了重要物质基础。研究区主要位于盆地沉降中心东侧,较深的水体环境及缓慢的沉积速率条件下,接受了厚层的泥质及沉积有机质堆积。同时,该时期稳定的缺氧还原环境为沉积有机质的保存提供了关键条件(图8)。
图8 下寺湾地区73段沉积时期富有机质泥页岩发育模式Fig.8 Development mode for shale with rich organic matter during sedimentary period of Chang73 Member in Xiasiwan area
研究区长73段半深湖-深湖亚相泥页岩发育厚度大,连续性好,有机质丰度高,有机质类型较好,具有巨大的页岩气烃源岩潜力。长7油层组沉积有机质主要呈条带状、纹层状、薄膜状、分散块状等方式赋存于黑色泥页岩层段中,表现为顺层富集、大段厚层富集及大面积分布等特征。
长73段泥页岩有机质富集受多因素控制,其中,构造演化是基础,沉积环境有机质发育及保存是关键,火山活动及浊流等事件是影响有机质富集的重要因素。长7油层组沉积时期盆地基底大幅沉降形成大规模沉积中心,形成了研究区半深湖-深湖亚相沉积格局。长73段在潮湿-半干旱气候及较深的水体背景下,湖盆内水生生物繁盛及水体的富营养化,为沉积有机质发育提供了重要物质基础;同时,长期且稳定的缺氧还原环境为沉积有机质保存提供了关键条件。