马奎前,蔡 晖,高 岳,姜瑞忠
(1.中海石油(中国)有限公司天津分公司,天津 300459;2.中国石油大学(华东)石油工程学院,山东青岛 266580)
大孔道或高渗透条带在注入水高倍冲刷下演化形成优势渗流通道,是导致中高含水油田局部注采受效差,储层水驱不均衡的根本原因[1]。优势渗流通道不仅会导致注入水突进、生产井含水快速上升,还会严重制约当前井网的波及程度和水驱效果,给油田下一步的稳油控水带来了极大的挑战[2-3]。如何更加清晰地认识储层中优势渗流通道的发育情况,是油田中高含水期综合注水调整的基础和关键环节。目前已有的优势渗流通道的识别方法主要包括试井方法[4-5]、产液剖面测试法[6-7]、生产数据分析法[8]、模糊判别分析法[9]、油藏数值模拟方法[10-11]和示踪剂方法等。试井方法、生产数据分析法和示踪剂方法只能定性分析井间是否发育大孔道,无法对优势渗流通道区域边界进行识别;产液剖面测试法只能定位近井地带水淹层,无法对井间优势渗流通道进行分析;模糊判别分析法和以往的油藏数值模拟方法受人为因素影响大,主观性较强。因此,目前常规优势渗流通道识别方法,只能对优势渗流通道做定性分析和阶段性评价,无法实时表征优势渗流通道的发育状况。
在精细地质建模和储层时变模拟等技术的推动下,油藏数值模拟方法达到了新高度[12-13]。基于油藏数值模拟的流场评价方法,能更加真实地描述优势渗流通道的演化过程,在直观性和定量化表征方面具有明显优势[14-15]。但是,以往流场分级界限的划分依据数据聚类等方法[16-18],不能体现各级渗流区域的物理背景,导致流场分级无实际意义,优势渗流通道表征不准确。综上所述,目前存在的优势渗流通道识别方法,难以对优势渗流通道区域进行实时定量表征。
结合优势渗流通道的特点,提出流场评价指标——油通比,用来表征水置换油效率。根据油通比曲线在不同含水阶段的形态划分4级流场渗流区域,使划分界限具有现实物理意义,实现了对储层优势渗流通道的定量表征和识别。与现场示踪剂测试结果的对比表明,流场识别结果与示踪剂测试结果基本一致。
优势渗流通道的定义有很多种,有人将其定义为“大孔道”、“窜流通道”或“高渗通道”[19-20],但仅从地质角度来定义是片面的。事实上,优势渗流通道应为在地质因素和开发动态因素的综合影响下,在油藏内部形成的低效水流经的通道[21]。在注入水的高倍冲刷下,高渗透条带内部的胶结物减少,黏土矿物被冲走或冲散,孔隙半径增大,储层渗透率提高,岩石表面的润湿性向亲水方向转化[22-23]。优势渗流通道的形成过程往往伴随着含水率的不断增大以及水置换油效率的不断减小[24-26]。
基于油藏数值模拟方法,提出一个用来评价冲刷强度的指标——驱替通量,其定义为一段时间内累积通过单位孔隙截面积的流体体积,其表达式为:
当通过网格某一方向总的流体体积不变时,网格划分越多孔隙体积倍数越大,而驱替通量保持不变。驱替通量能更加真实地反映储层中的冲刷强度,假设一段时间内,通过网格孔隙截面积(ϕA)的流体体积为Q,则由(1)式可以得到该段时间内的驱替通量。
但在实际应用中,用驱替通量去表征油藏流场冲刷强度,只能定性分析储层冲刷强度的相对强弱分布,无法定量划分不同流场区域,更无法表征优势流场的发育位置和程度;并且驱替通量既包含油相冲刷强度又包含水相冲刷强度,而优势渗流通道往往受注入水的冲刷作用控制,因此在驱替通量的基础上,进一步提出水相驱替通量。水相驱替通量的定义为一段时间内累积通过单位孔隙截面积的水相体积,其反映了注入水对储层的冲刷强度或对油相的驱替程度,其值越大表明注入水对油相的驱替强度越大,表达式为:
优势渗流通道形成的最直观标志就是低效水的产生,因此如何刻画低效水的流经位置,是定量表征储层优势渗流通道的关键。立足于开发动态,从水置换油效率的角度出发,将水相驱替通量与含油饱和度变化值组合,创建流场评价指标,通过评价无效水流经区域,来定位储层优势渗流通道。
水相驱替通量表征水相冲刷程度,含油饱和度变化值表征油相被置换程度,将其组合为一个新的流场指标——油通比,即单位水相驱替通量所改变的网格含油饱和度,其表达式为:
油通比可精确地刻画多孔介质中水置换油效率。
以渤海BZ 油田流体物性参数为例建立概念模型(图1),其网格步长为20 m×20 m×5 m,孔隙度为0.32,水平渗透率为1 500 mD,垂直与水平方向渗透率之比为0.1,原油黏度为300 mPa·s。为了明确油通比在驱替过程中的变化规律,以油通比为纵坐标,含水率为横坐标,首先以点1处即主流线中心网格为例,绘制油通比特征分级曲线(图2)。由图2可见,在驱替过程中,网格含水率不断升高,油通比不断降低。但不同阶段,油水间相互关系不同,油通比曲线也呈现出不同的变化形态。阶段①,油通比变化剧烈,这主要是因为在低含水阶段,油相流动能力较强,含油饱和度变化明显,水置换油效率相对较高,但随着含水率的上升,油通比快速减小;阶段②,油通比与含水率的关系曲线近似于线性变化,其斜率较低含水阶段明显降低,水置换油效率逐渐减小,但大部分的油主要在该阶段采出,为水驱油的主力区间;阶段③,在含水率为80%左右,油通比有一个跳跃式下掉,油通比曲线斜率也有所降低,这主要是因为进入高含水阶段,水相流动能力增强,油相流动能力减弱,产生大量对驱油无贡献的无效水导致水置换油效率急剧下降,因此在高含水阶段需要较高液量来维持产油量。
图1 概念模型Fig.1 Conceptual model
图2 油通比特征分级曲线Fig.2 Hierarchical curve of OFR characteristics
根据油通比特征曲线在3个不同含水阶段的转折点,划分4 级流场渗流区域(图2),从高到底分别对应4 级未波及区、3 级油水前缘区、2 级有效动用区、1 级优势渗流区,其各区域的流场物理含义如表1所示。
表1 流场渗流区域分级特征Table1 Hierarchical characteristics of flow area in flow field
为了评价油通比流场分级方法的适应性,分别在图1 概念模型中垂直于主流线方向上取3 个测试点,并绘制3 个点的油通比特征曲线(图3)。由图3可见,同一模型在不同网格处的油通比特征曲线有所不同,但都存在所描述的3个变化阶段,具体特征体现在:①不同网格处的油通比最大值不同,但未波及区的油通比一般为极大值(分母位置水相驱替通量为0),在分级的过程中,通常将未波及区设置一个较大数值即可准确表征。②同一含水率下不同网格处的油通比有所不同,油通比由大到小为点2、点1、点3,这说明在水驱油过程中,并非驱替速度越快水置换油效率越高,即并非主流线区域为水驱油最高效区,而是存在一个最优的驱替速度,使注入水的效率达到最高。③同一油通比下不同网格处的含水率不同,即不同网格处达到同一水置换油效率的含水率不同,这也说明了以往用含水率来简单划分优势渗流区域,不能真正体现水驱油的物理内涵。④虽然不同网格下的油通比特征曲线不同,但不同网格油通比特征曲线变化点所对应的油通比数值相同(图3 中黑色虚线),因此不同网格处的油通比分级界限相同。
图3 不同位置处油通比特征曲线Fig.3 Characteristic curves of OFR in different positions
综上所述,根据油通比特征曲线形态划分流场分级界限的方法,不受网格分布的影响,具有较好的适用性。
为了验证所提出的油通比流场分级方法表征目标储层优势渗流通道结果的合理性和正确性,对渤海BZ 油田A59H 和A27H 两个井组的数值模型开展流场分级评价,并与示踪剂解释结果相对比。根据油通比随时间变化曲线,划分油通比流场分级标准为:0 根据BZ 油田A59H 井组和A27H 井组的示踪剂测试资料分析,井组内部注采不均衡,其中A59H 井组中,A57H 井于示踪剂注入后54 d,首先检测到A59H 井注入的示踪剂,注水前缘推进速度为11.2 m/d,如图4a 所示,A59H 井与A57H 井存在1 级优势渗流条带;A27H井组中,A04H井于示踪剂注入30 d后,首先检测到A27H 井注入的示踪剂,注水前缘推进速度为10.8 m/d,其余井未见示踪剂,如图4b 所示,A27H 井趾部与A04H 井中部的井间基本处于1级优势渗流区,但与A25H 井沟通较差。综上所述,示踪剂解释结果与油通比解释结果具有较好的对应性,验证了利用油通比进行流场评价及划分井间优势渗流通道区域的正确性和合理性,并且,相较于示踪剂结果只能模糊评价,油通比表征结果可以清晰判断水平井见水点和井间优势渗流通道发育位置。 图4 优势渗流通道流场刻画结果验证Fig.4 Verification of predominant flow channels 为了明确调控过程中流场非均质性的改善程度,借助洛伦兹曲线[27-28]开展流场非均质性评价,把每个有效网格中的油通比作为洛伦兹系数,表征不同网格中水置换油效率的高低。 将目标区数值模型中有效网格的油通比按照从小到大的顺序排列,得到F1,F2,…,Fj,定义累积油通比系数为: 定义油通比洛伦兹函数为: 其中: 理想情况下油通比洛伦兹曲线为一条斜线,其代表每个网格的流场强度相同。但实际情况下,受流场非均质性的影响,油通比洛伦兹曲线往往呈一条曲线,其越偏离斜线代表流场非均质性越强,水驱冲刷越不均衡。 引入可以代表水驱冲刷非均质性强度的油通比非均质性系数: 其中Fk的变化范围是0~1,Fk的值越大,代表流场非均质性越强。 以渤海BZ油田为目标区块,开展流场调控技术应用。考虑在注入水高倍冲刷下,储层相对渗透率曲线会出现残余油饱和度降低,残余油下的水相相对渗透率降低,等渗点向右下移动的物理规律。在自主研发的数值模拟软件中,实现了相对渗透率曲线随驱替通量的实时变化(图5)。自主研发的数值模拟软件更加真实地表征优势渗流通道形成过程中的储层和流体的物性变化,同时也实现了油通比流场的计算与输出。 图5 相对渗透率曲线与驱替通量的关系Fig.5 Relationships between relative permeability curves and displacement flux 根据流场评价结果(图6),分区制定调控对策原则,以指导油田生产井控水和井间优势渗流通道调剖堵水。其中,针对4 级未波及区,开展侧钻、调整井加密“植流场”措施;针对3级油水前缘区,开展不稳定注水“匀流场”措施;针对2级有效动用区,开展分层调配,精细注水“稳流场”措施;针对1级优势渗流区,开展调剖堵水“抑流场”措施。 图6 BZ油田主力砂体油通比流场评价结果Fig.6 Flow-field evaluation results of main sand bodies by OFR in BZ Oilfield 调剖堵水措施 利用油通比对井间条带状优势渗流通道分布进行定位,在此基础之上进行调剖堵水。调剖堵水选井选层如表2所示。 表2 调剖堵水选井选层Table2 Well and layer selection for profile control and water shut-off 水平井控水措施 依据油通比流场表征结果,定量识别井间优势渗流通道,进而定位水平井高产水位置,针对全区23口局部水淹生产水平井实施控水措施,具体措施如下:跟部控水措施井包括A07H,A45H,A24H,A01H1,A03H,A23H,A51H,A52H 井;趾部控水措施井包括A04H,A27H,A44H,A10H,A25H,A21H,A11H,B03H,B11H,B13H,A57H 井;中部控水措施井包括A41H,A54H,A32H,A48H 井。措施实施后明显改善了井组内部的单一方向受效,扩大了井网的波及系数,条带状优势渗流通道得到有效治理。利用所创建的流场非均质性评价方法,对措施前后的流场非均质性开展评价(图7),在综合调控后油通比非均质性系数由0.791 5 减小到0.747 3,减小了5.6%,流场的非均质性明显降低,水驱效果变好。 图7 调控前后油通比洛伦兹曲线Fig.7 Lorentz curve of OFR before and after regulation 提出了一个新的流场评价指标——油通比,可以描述不同开发阶段水置换油效率的变化。根据油通比曲线在不同含水阶段形态划分4 级流场,使不同等级流场区域具有现实物理意义,实现了对储层流场的分级评价。通过对比不同位置处的油通比特征曲线发现,油通比分级界限不受网格取样点的影响,具有较强的适用性。 基于渤海BZ油田,对油通比流场评价方法的可靠性进行验证,油通比流场表征的优势渗流区与A59H 井组、A27H 井组示踪剂解释结果基本一致,证明了该方法的正确性和合理性。 在油通比流场表征结果的指导下精准施策,在实施水平井控水和调剖堵水措施后,流场非均质性明显改善。油通比流场评价方法可有效指导同类型“双高”油田,进行注水综合调整优化设计,改善油藏井网波及程度和开发效果。 符号注释: A——过水截面积,m2; Ax,Ay,Az——x,y,z方向的网格截面积,m2; F——油通比,m-1; Fj——第j个网格的油通比,m-1; Fk——油通比非均质性系数,无因次; Gi——累积油通比系数,无因次; i,j——网格数; Kro——油相相对渗透率; Krw——水相相对渗透率; M——驱替通量,m; Mw——水相驱替通量,m; N——模型的有效网格数; Q——累积通过合方向上网格孔隙截面积的流体体积,m3; Qw——累积通过合方向上网格孔隙截面积的水相体积,m; Qwx,Qwy,Qwz——x,y,z方向上横截面单位时间通过的水相体积,m3/s; Qx,Qy,Qz——x,y,z方向上的累积流体体积,m3; So——含油饱和度; Soi——原始含油饱和度; x——油通比洛伦兹函数的积分自变量,无因次; xi——前i个网格的累积有效网格系数; ϕ——孔隙度。2 流场非均质性评价方法
3 实例应用
4 结论