碳酸盐岩油藏不同裂缝产状岩心水驱油实验及水驱规律

2022-11-26 13:05郭红鑫程林松
油气地质与采收率 2022年6期
关键词:产状驱油碳酸盐岩

郭红鑫,程林松,王 鹏,贾 品

(1.油气资源与探测国家重点实验室中国石油大学(北京),北京 102249;2.中国石油大学(北京)石油工程学院,北京 102249)

碳酸盐岩油藏储量大,分布广,单井日产油量 大。据统计,碳酸盐岩油藏油气总产量约占全球油气总产量的60%,全球单井日产油量超过1 000 t/d的油井主要来自碳酸盐岩油藏。因此碳酸盐岩油藏是全球油气勘探开发的重要研究领域[1-3]。同时,碳酸盐岩油藏广泛发育各种产状裂缝,这不仅加剧了储层的非均质性,并且导致出现注入水沿裂缝突进、含水率上升快、油井产能差异大等开发矛盾[4-6]。因此,碳酸盐岩裂缝产状的研究对提高油气产能具有重要意义[7]。

目前,研究碳酸盐岩油藏水驱油机理及特征主要依赖于微观孔喉、岩心尺度物理实验以及数值模拟方法:①微观孔喉方法是通过可视化模型来研究碳酸盐岩水驱油微观机理。王璐等设计研制了裂缝型、孔洞型和缝洞型碳酸盐岩可视化模型,重点研究了3 种储层类型注水驱替时是否发生水窜、见水时间以及采出程度等[8]。对于广泛发育裂缝的储层,李雪娇等借助微观蚀刻玻璃模型,研究了体膨颗粒在缝洞中的堵水机理及卡封运移规律[9]。对于缝洞型碳酸盐岩油藏,借助微观可视化技术,从微观上观察溶洞和裂缝的水驱油机理及耦合流动作用[10-11]。②岩心尺度物理实验方法是通过碳酸盐岩的岩心驱替实验,分析水驱特征,揭示岩心水驱油机理。苏彦春等利用不同倾角裂缝岩心渗吸实验,得出岩心内微裂缝发育程度越大,基质渗吸采出程度越高[12]。另外,采用低矿化度水[13-14]、合理的注水压力[15-16]以及注水速率[17]可以有效降低残余油饱和度,提高采收率。廉培庆等分析了水平贯通缝岩心与基质岩心相对渗透率曲线的差异,研究了带缝岩心的应力敏感情况,发现含裂缝的岩心应力敏感更强[18]。③数值模拟方法是通过建立油藏数值解的方式来研究裂缝发育的碳酸盐岩油藏水驱油机理。房娜等在不同裂缝发育程度下优化周期注水参数,得到裂缝分布越不均匀,周期注水的间注时间相应延长,注采比减小[19]。对于注入水沿裂缝窜进的现象,可以采用不稳定注水的方式,增大水驱波及系数,抑制含水率增加[20-22]。郭小哲等建立了两注一采正对水平井井网的数值模拟,定量刻画高渗透层水流通道,并优化高渗透层控水参数[23]。对于单缝洞的碳酸盐岩油藏,杨前雄等利用数值模拟研究单相驱替时溶洞内的流线分布,发现了溶洞内流体流动的规律[24]。钦东科等利用油藏数值模拟技术,分析碳酸盐岩油藏地质特征、开发生产动态等,进而提出合理的开发建议[25-29]。以上从微观尺度、岩心尺度和油藏尺度3方面研究了碳酸盐岩油藏水驱油机理,但针对高角度缝和低角度缝、贯穿缝和非贯穿缝的水驱特征及水驱油机理研究较少。

为此,笔者通过制备不同裂缝产状碳酸盐岩岩心并开展岩心驱替实验,对比分析了不同裂缝产状岩心的水驱油规律,总结提炼了水平贯穿缝岩心呈现三段式动用规律,分别从无水期、中低含水期和高含水期分析了每个阶段的特征。针对水驱特征对比,分析了5种裂缝产状岩心的见水规律、驱油效率、相对渗透率曲线等,提出了仅考虑裂缝的渗透率计算方法,解决了束缚水饱和度难统一的问题,对裂缝型碳酸盐岩油藏注水开发具有指导借鉴意义。

1 不同裂缝产状岩心制备及岩心驱替实验

1.1 裂缝发育模式及典型特征抽提

目标区块为裂缝-孔隙型碳酸盐岩油藏,裂缝较为发育,储层非均质性强。该油藏发育各种产状裂缝,其中低角度缝和水平缝占78.5%,斜交缝占8.8%,高角度缝占12.7%(图1)。依据油藏发育的裂缝产状类型,实验设计了基质型、水平贯穿缝(裂缝倾角为0°)、低角度贯穿缝(裂缝倾角为15°)、低角度非贯穿缝(裂缝倾角为30°)和高角度非贯穿缝(裂缝倾角为75°)等5种类型岩心。

图1 目标区发育的各种产状裂缝Fig.1 Various fracture occurrences in target area

1.2 人造碳酸盐岩岩心制备

依据目标区块天然岩心孔渗资料制备人造碳酸盐岩岩心(表1)。利用环氧树脂将方解石砂和白云石砂制备成基质型岩心,对于水平贯穿缝岩心,采用挤压造缝,其余低角度缝和高角度缝均采用切割造缝(图2)。

图2 5种裂缝产状岩心Fig.2 Cores with five types of fracture occurrences

表1 人造碳酸盐岩岩心基础参数设计Table1 Basic parameter design of artificial carbonate core

1.3 不同裂缝产状岩心驱替实验

岩心驱替实验装置主要有UPUMP-100 恒压恒速驱替泵、2 L 中间容器、岩心夹持器、精密压力表、高精度围压泵和分液管等。利用该装置(图3),实时记录流体流量和压力变化,探究不同裂缝产状对水驱油特征的影响规律。基于实际油田区块油水黏度比为1,为了达到动力相似,本实验保证了驱替液与模拟油的黏度比为1。实验模拟油为无水煤油,利用品氏黏度计测量煤油黏度为2.3 mPa⋅s,采用丙三醇与水以1∶2.86 的体积比配制驱替液(以下简称水),使驱替液黏度也达到2.3 mPa⋅s。

图3 岩心驱替实验装置示意Fig.3 Devices of core displacement experiment

岩心驱替实验步骤主要包括:①干岩心测量。采用电子天平称取干岩心质量,利用游标卡尺测岩心长度和直径,计算出岩心体积,同时利用气体流量计测定干岩心的气测渗透率。②饱和水。先用真空泵将岩心抽真空,再利用恒压恒速驱替泵,以1 mL/min 的速度恒速注入水,待入口压力稳定(大约驱替3 h),计量1 min产水量,计算岩心水相渗透率。称取饱和水后岩心的质量,计算岩心的孔隙度。③油驱水,建立束缚水。以0.5 mL/min 的速度恒速注入油,待入口压力稳定(大约注入20 PV),记录累积产水量,计算束缚水饱和度。计量1 min 产油量,计算油相渗透率。由于注入油易沿裂缝窜流,因此岩心充分饱和油较难,需要束缚水饱和度标定来解决。④水驱油。以0.5 mL/min 的速度恒速注入水。从岩心出口端出油时开始记录时间,同时需要记录入口压力、累积产油量和累积产液量。待岩心出口端出水时,需要记录见水时间、见水时的累积产油量、累积产液量以及入口压力。当注入30 PV 后,测定残余油饱和度下的水相渗透率,计算残余油饱和度。

2 不同裂缝产状岩心基础渗流参数标定

2.1 裂缝渗透率计算方法

实验利用气体流量计测定不同裂缝产状岩心的渗透率,该渗透率为基质和裂缝共同作用的渗透率,结合理论计算方法,以确定纯裂缝的渗透率。

以水平贯穿缝岩心为例,根据Hagen-Poiseuille方程,假设含有1条裂缝的岩石,并且假设裂缝为矩形的、平滑的、没有任何填充物,则有:

结合(3)式和(4)式,得到不填充裂缝的渗透率与孔隙度的关系式为:

已知水平贯穿缝岩心裂缝高度hf,裂缝宽度ωf,将上述数据代入(4)式和(5)式中,计算得到未填充裂缝的渗透率K2。同时,实验采用气体流量计测得水平贯穿缝岩心气测渗透率(基质和裂缝共同作用的渗透率)K1,那么本实验所使用的水平贯穿缝岩心的填充裂缝的渗透率(仅考虑裂缝的渗透率)取值范围为K1—K2。

2.2 束缚水饱和度处理方法

实验过程中,由于不同裂缝产状岩心的渗透率差异大,使得饱和油后建立的束缚水饱和度差异较大,对驱油效率和相对渗透率曲线影响较大,因此要减小实验误差,就得保证不同裂缝产状的岩心具有相同的束缚水饱和度。可采取的措施主要包括:①不断改变饱和油的速度,使得岩心内部达到不稳定状态,油可以驱替小孔隙内的水。②交换岩心的注入端和采出端,使得岩心整体束缚水饱和度均匀,并能驱替出更多的水。③大流量冲刷。暂时关闭岩心夹持器注入端,等压力上升到一定值后,再打开开关,使其驱替出更多的水。通过以上措施,基本实现了不同裂缝产状下饱和油后驱替出的水量一致,但也会有一定的差异,因此需通过理论的方式对束缚水饱和度进行标定,即确定相同的束缚水饱和度。根据实际测得的束缚水饱和度与标定的束缚水饱和度差异,确定相应的残余油饱和度,这样不同裂缝产状岩心的相对渗透率曲线才具有可比性。束缚水饱和度的标定,可以更清晰地对比不同裂缝产状岩心的相对渗透率曲线中的残余油饱和度、两相区宽窄以及等渗点等。

2.3 不同裂缝产状岩心渗流参数对比

通过岩心驱替实验,测定了不同裂缝产状岩心的实验数据(表2)。较基质型和非贯穿缝来说,贯穿缝可以大幅度提高岩心渗透率,增大残余油饱和度,这是因为贯穿缝作为岩心的主要渗流通道,提高了岩心整体的渗透率,但抑制了基质的动用,使得基质内剩余油较多,驱油效率较低。同时,残余油饱和度下的水相渗透率明显小于水相渗透率和束缚水饱和度下的油相渗透率,因为残余油饱和度下的可动流体范围更小,大部分岩心孔隙被残余油和束缚水占据,这些流体都是不可动流体,导致渗透率降低。

表2 不同裂缝产状岩心实验数据Table2 Experimental data of cores with different fracture occurrences

从渗透率排序可以看出,在裂缝未贯穿岩心条件下,裂缝的存在及角度对岩心整体基础渗流参数影响较小;裂缝贯穿岩心后,岩心整体渗透率大幅提升,残余油饱和度增加。

3 不同裂缝产状岩心水驱特征

3.1 含水率

从图4 可以看出,水平贯穿缝岩心见水时间最早,低角度贯穿缝岩心次之;岩心裂缝倾角越小,见水时间越早。5 种裂缝产状岩心含水率上升曲线均为凸型,即无水采油期短、含水率上升快、(特)高含水期长,岩心见水后含水率迅速增加到90%以上,其主因是水驱油过程中,岩心出口端见水后,即形成了窜流通道,在不改变注入速度的情况下,窜流通道一旦形成,较难波及到岩心内部基质,产油量小,甚至为0,而含水率将快速增加。

图4 含水率随注水量的变化关系Fig.4 Watercut varying with water injection volume

3.2 驱油效率

驱油效率是岩心驱替实验评价驱替效果的重要指标。对比5 种裂缝产状岩心的驱油效率(图5)可知,基质型、高角度非贯穿缝和低角度非贯穿缝岩心的驱油效率最高且之间差异小,水平贯穿缝岩心驱油效率最低,仅为基质型岩心驱油效率的50%。较水平贯穿缝岩心,低角度贯穿缝岩心驱油效率有所增幅,由于其虽为贯穿缝,但其裂缝更长,近缝基质动用范围大,驱油效率更高。基质型岩心、非贯穿缝岩心(包括高角度非贯穿缝岩心和低角度非贯穿缝岩心)、贯穿缝岩心(包括低角度贯穿缝岩心和水平贯穿缝岩心)的无水驱油效率逐渐递减(图6),因为在岩心内部,随着裂缝倾角降低,水沿裂缝窜流现象更明显,远缝基质在见水前较难动用,并且见水时间更早,所以无水驱油效率低。

图5 5种裂缝产状岩心的驱油效率变化Fig.5 Oil displacement efficiency of cores with five types of fracture occurrences

图6 无水驱油效率和最终驱油效率的变化Fig.6 Water-free oil displacement efficiency and final oil displacement efficiency

3.3 相对渗透率曲线

通过记录岩心出口端实时的流体产出速率和驱替压力,利用JBN 方法[30],可以计算获取油水两相相对渗透率(图7)。随着裂缝影响增加(即裂缝倾角递减),油(水)相对渗透率曲线下降(上升)加快,残余油饱和度变大,水相相对渗透率增大,两相区逐渐变窄。非贯穿缝岩心之间相对渗透率曲线变化差异小,贯穿缝岩心之间变化差异大。

图7 5种裂缝产状岩心相对渗透率的变化Fig.7 Relative permeability of cores with five types of fracture occurrences

4 不同裂缝产状岩心水驱油规律

4.1 不同的动用阶段

3 组不同渗透率的水平贯穿缝岩心驱替实验完成后,对驱替压力进行分析发现,水平贯穿缝岩心的压力曲线呈三段式特征(图8)。其中,第Ⅰ阶段定义为同步动用阶段,该阶段驱替压力较高,可动用岩心注入端基质和裂缝。第Ⅱ阶段定义为近缝基质动用阶段,该阶段流体沿裂缝窜流,导致驱替压力有所下降,同时,水会从裂缝侧面扩展到近缝基质,导致部分近缝基质被动用。第Ⅲ阶段定义为裂缝窜流阶段,驱替后期大部分注入水沿裂缝窜进,仅单相水流动,驱替压力较低,此时岩心整体动用范围表现为从入口端到出口端的子弹型分布。

图8 水平贯穿缝岩心驱替压力变化Fig.8 Displacement pressures of core with horizontal through fractures

4.2 不同的含水阶段

根据无水期、中低含水期和高含水期等不同含水阶段来分析碳酸盐岩岩心水驱油规律(图9),其特征[31]主要包括:①无水期。该阶段为水驱油阶段,主要动用裂缝及近缝基质,驱油动力为岩心两端的驱替压差,驱油效率较高,为主要的驱油阶段,也是油田开发过程的高产阶段,决定了油田的开发效益。②中低含水期。该阶段是水驱油到自吸排油的过渡阶段。岩心实验中,一旦出口端见水,含水率迅速上升,导致中低含水期较短,产油量迅速下降,甚至为0。③高含水期。该阶段是远缝基质的自吸排油阶段,主要动用远缝基质,驱油动力为毛细管力,驱油效率较低。该阶段是油田开发过程的低产阶段,但维持时间较长。

图9 不同裂缝产状岩心驱油效率与含水率的关系Fig.9 Relationship between oil displacement efficiency and water cut of cores with different fracture occurrences

5 矿场应用

提液措施是油田进入中高含水期后减缓产量递减的一种重要方法,但提液措施需要确定最佳的提液时机。根据岩心驱替实验得到的相对渗透率曲线(图7),结合实际油田的原油黏度和体积系数等流体物性资料,并利用无因次采液指数和无因次采油指数公式[32],即可得到无因次采液、无因次采油指数曲线(图10)。从图10中可知,随着含水率的增加,5 种裂缝产状岩心无因次采液指数变大且后期增幅较大;且在相同的含水率下,裂缝倾角越小,无因次采油指数越小。由于提液时机一般选择在无因次采油指数递减较缓且无因次采液指数快速增加之前,所以该目标区块的提液时机在含水率为20%~80%;同时,根据不同裂缝产状岩心含水率与驱油效率曲线,可以分析目标区块注水开发的水驱特征,并绘制水驱特征曲线。在实际油田中,水平缝和低角度缝加剧了储层的非均质性,导致剩余油较多,且难以实现有效动用。而高角度缝对储层非均质性的影响有限,既可以一定程度上提高储层渗透率,也可以保持较高的采出程度。

图10 目标区块无因次采液、无因次采油指数的变化Fig.10 Indexes of dimensionless liquid production and oil production in target area

6 结论

通过对比不同裂缝产状碳酸盐岩岩心驱替实验并开展矿场应用,发现贯穿缝在大幅度提高渗透率的同时,也会导致残余油饱和度增大。贯穿缝岩心见水时间早、无水驱油效率和最终驱油效率较低。随着裂缝影响增加,油(水)相相对渗透率曲线下降(上升)加快,残余油饱和度变大,水相相对渗透率增大,两相区逐渐变窄。其中,水平贯穿缝岩心的动用过程分为同步动用阶段、近缝基质动用阶段和裂缝窜流阶段3 个阶段。岩心驱替实验中,无水期为水驱油阶段,驱油效率高;中低含水期为水驱油到自吸排油的过渡阶段,产油量迅速下降;高含水期为自吸排油阶段,驱油效率低,无水期和高含水期是岩心主要的驱油阶段。同时,结合实验气测渗透率和Hagen-Poiseuille 方程,得到仅考虑填充裂缝的渗透率计算方法;通过3 方面的实验手段以及束缚水饱和度标定,减小了束缚水饱和度差异带来的误差,使结果更准确。

符号解释

A——岩石截面积,cm2;

hf——裂缝高度,cm;

K——裂缝渗透率,1011mD;

K1——气测渗透率,1011mD;

K2——未填充裂缝的渗透率,1011mD;

L——裂缝长度,cm;

Δp——裂缝两端压差,kPa;

q——裂缝内流量,m3/s;

μ——流体黏度,mPa∙s;

ϕ——裂缝孔隙度;

ωf——裂缝宽度,cm。

猜你喜欢
产状驱油碳酸盐岩
浅谈砂岩储层的岩石学特征
碳酸盐岩裂缝描述七大难点
激电联合剖面在判断矽卡岩型矿床矿体产状中的应用
“三点解析法”估算地质体产状及应用
高密度电阻率法在山坑石墨矿中的应用
注气驱油技术发展应用及海上油田启示
大数据统计在碳酸盐岩油气田开发中的应用
塔河10区碳酸盐岩裂缝型储层承压堵漏技术
考虑酸蚀蚓孔的碳酸盐岩储层酸压产能预测
CO2驱油与埋存对低碳经济的意义