溯本求源 注重数学本质

2022-07-06 09:15:43张伟红
数理天地(初中版) 2022年20期
关键词:初中数学

张伟红

【摘要】中考数学命题以《数学课程标准》为依据,以“落实基础,注重过程,渗透思想,突出能力,强调应用,着重创新”为思想.中考题目大多源于课本的例題和习题,通过对教材习题的不断挖掘,一题多变,一题多解,逐渐变成了有价值的数学新问题,从而得到了一种解决此类问题的方法.

【关键词】  教材题目;初中数学;变式探究

纵观各地中考数学命题,其中很多题目都是源于课本的例题和习题,通过变式改编而成,这类题不仅较好地体现了命题的原则,还体现了基础性和学好课本知识的重要性,有着非常重要的导向作用,不仅能引导师生重视基础,重视教材,研究教材,用好用活教材,而且能激发学生学习数学的兴趣,挖掘习题的功能,促进学生对知识本质的理解.下面以一道教材的习题为例,突出解题的方法和题目的变式探究.

题目呈现 人教版八年级下册教材有这样一道题目:如,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.

学生看到本题会想到了一线三垂直模型,过点F作FH⊥BC,垂足为H,要证AE=EF,只需要证明Rt△ABE≌Rt△EHF,条件找到了两组角相等,即∠B=∠H=90°,∠BAE=∠HEF ,但是始终没有边相等.这两个三角形的确全等,但是边的条件找不到,此时引导学生换一种思路,要证AE=EF,能否构造一个与△ECF全等的三角形,请再思考.学生经过思考较容易的得到解法.如图2,取AB的中点H,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECF,从而得到AE=EF.

下面对本道习题做三种变式探究:

变式1 如果把“点E是边BC的中点”改为“点E是边BC上(除B、C外)的任意一点”,其他条件不变,那么结论“AE=EF”仍然成立吗,若成立,请写出证明过程;如果不正确,说明理由.

解法1 如图3,在AB上取一点M,使AM=CE,连接ME,

所以BM=BE,

所以∠BME=45°,∠AME=135°,

因为CF是正方形外交∠DCG的平分线,

所以∠DCF=45°,∠ECF=135°,

同(1)可证明△AME≌△ECF,

所以AE=EF;

解法2 如图4,连接AC,易得到∠ACF=90°,又∠AEF=90°,所以点A、E、C、F在以AF为直径的同一个圆上,所以∠AFE=∠ACE=45°,从而∠EAF=45°,由∠AFE=∠EAF证明出AE=EF.

变式2 如图5,如果点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立吗?

具体解法 成立.理由如下:如图6,延长BA到M,使AM=CE,

因为∠AEF=90°,

所以∠FEG+∠AEB=90°.

因为∠BAE+∠AEB=90°,

所以∠BAE=∠FEG,

所以∠MAE=∠CEF.

因为AB=BC,

所以AB+AM=BC+CE,

即BM=BE.

所以∠M=45°,

所以∠M=∠FCE.

在△AME与△ECF中,

∠MAE=∠CEFAM=CE∠M=∠FCE,

所以△AME≌△ECF(ASA),

所以AE=EF.

变式3 如图7,如果点E是BC的反向延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立吗?说明理由.

具体解法 在AB延长线上截取BH=BE,连接EH.

因为四边形ABCD是正方形,

所以AB=BC,∠ABC=∠BCD=90°.

又因为BH=BE,

所以AH=CE.

因为∠ABC=∠BCD=90°,BH=BE,CM为正方形外角平分线.

所以∠AHE=∠ECF=45°.

因为∠ABE=90°,∠AEF=90°.

所以∠AEB+∠EAH=90°,

∠AEB+∠FEC=90°,

所以∠EAH=∠FEC.

在△EAH和△FEC中,

∠EAH=∠FECAH=CE∠AHE=∠ECF,

所以△EAH≌△FEC(ASA),

所以AE=EF.

通过对教材习题的不断挖掘,一题多变,一题多解,逐渐变成了有价值的数学新问题,从而得到了一种解决此类问题的方法,不仅使所学的知识触类旁通,真正起到举一反三的学习效果,而且让学生开拓了眼界,提升了解题的思维,培养了学生分析解决数学问题的能力.

参考文献:

[1]北京全日制义务教育数学课程标准[实验稿]. 中华人民共和国教育部制定. 北京师范大学出版社 . 2011.

[2]曹松峰.一道经典几何题的变式探究[J].中学生数理化(八年级数学)(配合人教社教材),2014,No.937(12):12-13.

猜你喜欢
初中数学
问题导学法在初中数学教学的应用
如何以学定教,提高初中数学教学效率
探究新课改视野下初中数学教学的创新
如何有效开展初中数学教研工作
关注动态生成,提高课堂效率
考试周刊(2016年79期)2016-10-13 22:21:41
初中数学列方程解应用题教学探微
考试周刊(2016年77期)2016-10-09 11:09:02
试分析初中数学二元一次方程和一次函数的教学
考试周刊(2016年77期)2016-10-09 11:07:28
初中数学教学中如何培养学生的思维能力
考试周刊(2016年77期)2016-10-09 11:06:46
例谈数学教学中的“顿悟”
考试周刊(2016年77期)2016-10-09 11:00:03
初中数学高效课堂的创建策略
考试周刊(2016年76期)2016-10-09 08:59:50