外泌体在糖尿病性心肌病治疗中的研究进展

2022-06-08 15:56张志强张洪生张金国尉希清
中国现代医生 2022年10期
关键词:外泌体治疗细胞

张志强 张洪生 张金国 尉希清

[摘要] 糖尿病性心肌病(DCM)是糖尿病患者發生心功能不全或心力衰竭,却不能用缺血性心肌病、高血压性心脏病及其他心肌组织病变解释的心肌疾病。该病为2型糖尿病(T2DM)的主要并发症之一,也是晚期糖尿病心力衰竭和死亡的主要原因之一。该病在广泛微血管病变和代谢紊乱基础上出现广泛心肌组织的灶性坏死,逐渐出现亚临床心功能障碍,并逐渐进展至心律失常、心力衰竭及心源性休克,重症患者甚至发生猝死。其机制尚不明确,也没有特异的治疗方法。外泌体是一种直径为30~150 nm的小囊泡,含有多种RNA和蛋白质,现如今,外泌体特指盘状囊泡,直径在40~100 nm。多囊泡体是外泌体的主要来源,其是由细胞内的溶酶体微粒通过内陷而形成,其外膜与细胞膜融合以后释放到细胞外基质。外泌体存在于自身的体液中,能从一些可培养的细胞分泌出来。外泌体作为一种特异性分泌出来的膜泡,可以作为细胞间通讯的一种工具。外泌体中的某些生物成分可能在DCM的发生、发展中起着重要作用,且对DCM的治疗有着一定作用。现主要从糖尿病性心肌病的危险因素、病理生理机制、外泌体在DCM治疗中的进展等方面进行综述,以期为DCM的治疗提供新的方向。

[关键词] 糖尿病性心肌病;外泌体;细胞;治疗

[中图分类号] R587.2          [文献标识码] A          [文章编号] 1673-9701(2022)10-0189-04

[Abstract] Diabetic cardiomyopathy (DCM) is a myocardial disease in which diabetic patients develop cardiac insufficiency or heart failure, but cannot be explained by ischemic cardiomyopathy, hypertensive heart disease, and other cardiac lesions. The disease is one of the major complications of type 2 diabetes mellitus (T2DM) and one of the leading causes of heart failure and death in advanced diabetes. On the basis of extensive microangiopathy and metabolic disorders, the disease appears extensive myocardial necrosis, gradually appears subclinical cardiac dysfunction, and gradually progresses to heart failure, arrhythmia and cardiogenic shock, and even sudden death in critically ill patients. The mechanism is not clear, and there is no specific treatment. Exosomes refer to small membrane vesicles (30-150 nm) containing complex RNAs and proteins, and nowadays, they specifically refer to discoid vesicles with a diameter of 40- 100 nm. A variety of cells can secrete exosomes under both normal and pathological conditions. Exosomes are mainly derived from multivesicular bodies formed by intracellular lysosomal particle invagination, which are released into the extracellular matrix after fusion of the extracorporeal membrane of vesicles with the cell membrane. All cultured cell types can secrete exosomes, which are naturally present in body fluids, including blood, saliva, urine, cerebrospinal fluid, and milk. Exosomes are currently regarded as specifically secreted membrane vesicles involved in intercellular communication. Some biological components in exosomes may play an important role in the occurrence and development of DCM, and play a role in the treatment of DCM. This study mainly reviews the risk factors, pathophysiological mechanisms of diabetic cardiomyopathy, and the latest progress of exosomes in the treatment of DCM, to provide a new direction for the treatment of DCM.

[Key words] Diabetic cardiomyopathy; Exosomes; Cell; Therapy

糖尿病性心肌病(diabetic cardiomyopathy,DCM)是糖尿病患者发生心功能不全或心力衰竭,却不能用缺血性心肌病、高血压性心脏病及其他心肌组织病变解释的心肌疾病。近看来有证据表明,外泌体是糖尿病性心肌病背后的病理机制之一。现总结了目前关于糖尿病性心肌病病理生理机制的认识,通过收集近年来关于外泌体和糖尿病性心肌病的相关文献,就外泌体在糖尿病性心肌病发展及治疗中的进展做一综述,旨在为糖尿病性心肌病的治疗提供新的方向。

1 糖尿病性心肌病

1.1糖尿病性心肌病的定义

糖尿病性心肌病是一种特殊形式的心脏病,由心肌组织中胰岛素的抵抗、代偿性高胰岛素血症和高血糖进展所导致,其发生独立于其他心脏危险因素,如冠心病(coronary heart disease,CAD)和高血压。

1.2 糖尿病性心肌病的危险因素

作为一个独立疾病,糖尿病性心肌病于1972年首次在4例表现出心力衰竭症状的糖尿病患者中描述[1]。通过使用血管造影排除冠心病,1977年对17例2型糖尿病患者进行的一项研究提供了糖尿病心肌病变的确凿证据,其特征是心脏左心室舒张末期压升高,顺应性降低,射血分数降低,并伴有弥漫性运动降低。初步研究表明,糖尿病对心肌纤维化有明显而直接的影响,并伴随着心室顺应性降低和舒张功能障碍[2]。糖尿病患者心功能障碍的临床过程从亚临床心脏异常发展到射血分数正常的严重舒张性心力衰竭,最终发展到射血分数降低的心力衰竭[3-4]。研究表明,胰岛素抵抗、高血糖和高胰岛素血症均为糖尿病心肌病发生的独立危险因素[5]。

1.3 糖尿病性心肌病的病理生理机制

糖尿病性心肌病的病理生理机制包括线粒体功能障碍[6-8]、氧化应激[9]、晚期糖基化终产物(advanced glycation end-products,AGEs)的形成和沉积增加[10]、线粒体Ca2+处理和功能受损[11-12]、炎症[13]、肾素-血管紧张素-醛固酮系统[14](renin-angiotensin-aldosterone system,RAAS)、心脏自主神经病变[3]、内质网应激[15]、微血管功能障碍[16]、心外膜脂肪组织积聚和心脏免疫调节功能障碍[17-18]等。在这些病理生理机制的基础上,证据支持几种蛋白质和信号通路的作用,包括腺苷酸活化蛋白激酶[adenosine 5-monophosphate(AMP)-activated protein kinase,AMPK]、过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptor,PPAR)、O位N-乙酰葡萄糖胺(olinked N-acetylglucosamine,O-GlcNAc)、钠-葡萄糖协同转运蛋白2(sodium-dependent glucose transporters 2,SGLT-2)、蛋白激酶C(protein kinase C,PKC)、有丝分裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)、核转录因子NF-κB(nuclear transcription factor-κB,NF-κB)、轉录因子Nrf2(nuclear factor erythroid-2-related factor 2,NRF2)、微小RNA(microRNA,miRNA)[19]。据文献报道,外泌体或通过上述病理生理机制改变糖尿病性心肌病的发生、发展与预后[20]。

2外泌体与糖尿病性心肌病

2.1外泌体的生物学特点及其功能

外泌体是由细胞质膜向内内陷形成的,从而形成并产生早期的内小体。外泌体存在而且分布于很多生物的体液中,包括血液、乳汁、唾液、尿液等,是调控细胞间通讯的一种重要载体。在早期内小体的成熟过程中,内体膜的内腔萌芽形成并产生包含腔内小泡(intraluminal vesicle,ILV)的多泡小体(multivesicular body,MVB)。这些新形成的小泡含有不同的细胞质成分,包括蛋白质、脂质、DNA和几种类型的RNA[20]。当MVB形成时,ILV通过MVB与细胞膜的对接和融合释放到细胞外环境中,这是由小的GTPase依赖的蛋白质介导的,如Rab蛋白(如Rab27、Rab35),或者MVB可以与溶酶体融合,在溶酶体中MVB内容降解为细胞废物。外泌体的功能可以通过其跨膜整体蛋白或脂质与受体细胞的相互作用直接发挥作用,或通过内吞机制将其内容物传递到受体细胞的细胞质中间接发挥作用,并受葡萄糖浓度水平变化的调节[21]。高糖可上调miRNA-9、miRNA-15a、miRNA-30d和miRNA-133a的表达水平,下调miRNA-375的表达水平[22]。

2.2外泌体在糖尿病性心肌病中的应用

2.2.1外泌体热休克蛋白20(heat shock protein-20,HSP20)的过表达  HSP20水平的降低可能参与DCM的发生和向心力衰竭的进展[23],使得心肌细胞和组织发生一系列的病理生理改变,从而加剧了糖尿病性心肌病的发生、发展。在过表达HSP20的糖尿病心肌细胞中,HSP20促进外泌体的数量和质量的变化[24],从而改善血管生成和改善心功能。外泌体包含细胞保护蛋白,包括磷酸化的AKT、SOD1和Survivin,所有这些蛋白均分布于邻近的心肌细胞中,促进心肌血管生成,减轻氧化应激,改善糖尿病小鼠心脏的纤维化和凋亡[23]。显然,外泌体在调节不同细胞机制中的功能作用可以在糖尿病中改变,并有助于减轻糖尿病性心肌病的发生和发展。在高血糖条件下,外泌体可以在不同的心血管细胞之间传递和分配持续的信息,在短期内具有较大的临床意义。

2.2.2 外泌体储存核因子E2相关因子2  核因子E2相关因子2(nuclear factor erythroid-2- related factor 2,Nrf2)是一种转录因子,在应激状态下,通过抗氧化元件反应(anti-oxidative response element,ARE)位点调节特定基因的基础和诱导表达模式。Nrf2被认为是氧化应激的主要调节者,能够参与细胞分化、氧化还原止血、酶解毒、蛋白质介导的应激反应和酶介导的代谢反应等多种细胞功能,从而影响细胞。外泌体在糖尿病性心肌病动物模型中显示出显著的治疗效能[25]。外泌体是更稳定和可储存的材料,没有致癌风险,免疫排斥的可能性也很低。而且Exosomal-Nrf2和Exosomal-Nrf2介导的产物可以调节心肌细胞的氧化反应,诱导治疗的组织修复能力。Nrf2通过激活抗氧化信号通路,保护细胞免受氧化的不利影响。因此,应用Exosomal-Nrf2作为一种新兴的治疗工具是一种很有前途的方法[26-28]。

2.2.3 外泌体相关抗原R  糖尿病环境对巨噬细胞功能产生不利影响,从而改变DCM的发病机制及其转归。功能障碍的巨噬细胞不仅延长炎症反应,而且可能通过分泌促纤维化介质(如外泌体)促进左心室纤维化重构RNA结合蛋白,如人类抗原R(Hur),在一些病理生理条件下是转录后调控基因表达的关键调节因子。人类衰竭的心脏显示出更高的Hur水平。糖尿病环境可激活心肌和培养的骨髓巨噬细胞中Hur表达,并刺激Hur核浆转位和外泌体转移[29]。暴露于糖尿病环境的巨噬细胞外泌体显著增加小鼠成纤维细胞(体外)和心肌纤维化的炎症和促纤维化反应。而Exo-Hur缺乏症消除了上述影响。在糖尿病小鼠中,与对照-外泌体注射相比,去除巨噬细胞与骨髓基质细胞衍生的Hur缺陷的外泌体重建相比,可以抑制血管紧张素Ⅱ诱导的心脏纤维化反应。这些数据表明,Hur可能用于减轻糖尿病患者的巨噬细胞功能障碍引起的病理性纤维化[30]。

2.2.4外泌体与心脏副交感神经节神经元  糖尿病性心肌病涉及两种形式的心肌细胞死亡,包括凋亡和坏死。细胞凋亡的特征是细胞核的DNA片段化[31]。2019年Singla等[32]从大鼠右侧星状神经节分离出心脏副交感神经节神经元,并从此来源获得外泌体。他们应用H9c2细胞进行实验,通过TUNEL染色和细胞死亡ELISA方法对DNA片段化的评估证實了凋亡细胞的死亡。凋亡的进一步确认需要通过检测促凋亡蛋白Bax和Caspase-3。研究数据显示,葡萄糖处理后H9c2细胞中Caspase 3和Bax显著增加,提示高血糖诱导的凋亡[33]涉及这些促凋亡蛋白的上调。并通过分析促凋亡蛋白Caspase-3、Bax以及抗凋亡蛋白Bcl-2的存在,证实了高血糖诱导H9c2细胞凋亡,降低细胞存活率,源自于心脏副交感神经节神经元的外泌体能够抑制细胞凋亡,提高细胞存活率,恢复抗凋亡蛋白Bcl-2的水平。

外泌体是当今医学研究的一个热点领域,参与糖尿病性心肌病中的全部过程,如胰岛素代谢作用的抵抗、心肌肥厚和细胞凋亡等。目前关于糖尿病性心肌病的研究仍处于一个较早期的阶段,有待于进一步探索其在该病发生及发展进程中的具体作用机制,寻找治疗和预防糖尿病心肌病的可能性及方法。由于外泌体广泛存在于机体内,且获取便捷,正逐渐成为诊断和治疗心血管疾病的潜在的有效方式,然而仍有很多问题亟待解决,如何在体内调控外泌体的形成,如何在病灶处探索其丰富度等。外泌体的具体功能及其应用在很大程度上仍未被探索,还需进一步研究了解外泌体的作用机制,探索其更多潜在的治疗价值。

[参考文献]

[1]   Rubler S,Dlugash J,Yuceoglu YZ,et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis[J]. The American Journal of Cardiology,1972,30(6):595-602.

[2]   Regan TJ,Lyons MM,Ahmed SS,et al. Evidence for car diomyopathy in familial diabetes mellitus[J].The Journal of Clinical Investigation,1977,60(4):884-899.

[3]   Rajbhandari J,Fernandez C,Agarwal M,et al.Diabetic heart disease:A clinical update[J].World Journal of Diabetes,2021,12(4):383-406.

[4]   Marfella R,Sardu C,Mansueto G,et al.Evidence for hu man diabetic cardiomyopathy[J].Acta Diabetologica,2021,58(8):983-988.

[5]   Kucharz A,Kuakowski P.Mortality risk assessment in dilated cardiomyopathy:The Krakow DCM Risk Score.Authors′ reply[J].Kardiologia Polska,2021,79(2): 216.

[6]   Chen Y,Li X,Hua Y,et al.RIPK3-mediated necroptosis in diabetic cardiomyopathy requires CaMKⅡ activation[J].Oxidative Medicine and Cellular Longevity,2021,2021:6617816.

[7]   Ahmed U,Khaliq S,Ahmad H,et al.Pathogenesis of dia betic cardiomyopathy and role of miRNA[J].Critical Reviews in Eukaryotic Gene Expression,2021,31(1):79-92.

[8]   Jubaidi F,Zainalabidin S,Mariappan V,et al.Mitoch ondrial dysfunction in diabetic cardiomyopathy:The possible therapeutic roles of phenolic acids[J].International Journal of Molecular Sciences,2020,21(17):6043.

[9]   Wu X,Huang L,Liu J.Relationship between oxidative stress and nuclear factor-erythroid-2-related factor 2 signaling in diabetic cardiomyopathy (Review)[J].Experimental and Therapeutic Medicine,2021,22(1):678.

[10]  Zhao G,Zhang X,Wang H,et al.Beta carotene protects H9c2 cardiomyocytes from advanced glycation end product-induced endoplasmic reticulum stress,apoptosis,and autophagy via the PI3K/Akt/mTOR signaling pathway[J].Annals of Translational Medicine,2020,8(10):647.

[11]  Ozturk N,Uslu S,Ozdemir S.Diabetes-induced changes in cardiac voltage-gated ion channels[J].World Journal of Diabetes,2021,12(1):1-18.

[12]  Yuan H,Xu J,Zhu Y,et al. Activation of calcium-sensing receptor-mediated autophagy in high glucose-induced cardiac fibrosis in vitro[J].Molecular Medicine Reports,2020,22(3):2021-2031.

[13]  Kaur N,Guan Y,Raja R,et al. Mechanisms and therapeutic prospects of diabetic cardiomyopathy through the inflammatory response[J].Frontiers in Physiology,2021,12:694864.

[14]  Xiong J,Dong X,Li S,et al. Effects of (Pro)renin receptor on diabetic cardiomyopathy pathological processes in rats via the PRR-AMPK-YAP pathway[J].Frontiers in Physiology,2021,12:657378.

[15]  Wu M,Wang S,Xie Y,et al. Interleukin-33 alleviates diabetic cardiomyopathy through regulation of endoplasmic reticulum stress and autophagy via insulin-like growth factor-binding protein 3[J].Journal of Cellular Physiology,2021,236(6):4403-4419.

[16]  Mao Y,Hu Y,Feng W,et al. Effects and mechanisms of PSS-loaded nanoparticles on coronary microcirculation dysfunction in streptozotocin-induced diabetic cardiomyopathy rats[J].Biomedicine & Pharmacotherapy Biomedecine & Pharmacotherapie,2020,121:109280.

[17]  Ge T,Yu Y,Cui J,et al. The adaptive immune role of metallothioneins in the pathogenesis of diabetic cardiomyopathy:Good or bad[J].American Journal of Physiology Heart and Circulatory Physiology,2019,317(2):H264-H275.

[18]  Kadhi A,Mohammed F,Nemer G. The genetic pathways underlying immunotherapy in dilated cardiomyopathy[J]. Frontiers in Cardiovascular Medicine,2021,8:613295.

[19]  He X,Kuang G,Wu Y,et al. Emerging roles of exosomal miRNAs in diabetes mellitus[J].Clin Transl Med,2021,11(6):e468.

[20]  Cui X,Zhu L,Zhai R,et al. Mesenchymal stem cell-derived exosomes:A promising vector in treatment for diabetes and its microvascular complications[J].American Journal of Translational Research,2021,13(5):3942-3953.

[21]  Grieco G,Fignani D,Formichi C,et al. Extracellular vesicles in immune system regulation and type 1 diabetes:Cell-to-cell communication mediators,disease biomarkers,and promising therapeutic tools[J].Frontiers in Immunology,2021,12:682948.

[22]  Dehwah MA,Xu A,Huang Q. MicroRNAs and type 2 diabetes/obesity[J].Journal of Genetics and Genomics,2012,39(1):11-18.

[23]  Wang X,Gu H,Huang W,et al. Hsp20-mediated activation of exosome biogenesis in cardiomyocytes improves cardiac function and angiogenesis in diabetic mice[J].Diabetes,2016,65(10):3111-3128.

[24]  Feng CC,Liao PH,Tsai HI,et al. Tumorous imaginal disc 1(TID1)inhibits isoproterenol-induced cardiac hyper trophy and apoptosis by regulating c-terminus of hsc70-interacting protein(CHIP) mediated degradation of Gαs[J]. Int J Med Sci,2018,15(13):1537-1546.

[25]  Lin Y,Zhang F,Lian X,et al. Mesenchymal stem cell-derived exosomes improve diabetes mellitus-induced myocardial injury and fibrosis via inhibition of TGF-β1/Smad2 signaling pathway[J].Cellular and Molecular Biology (Noisy-le-Grand,France),2019,65(7):123-126.

[26]  Bellezza I,Giambanco I,Minelli A,et al. Nrf2-Keap1 signaling in oxidative and reductive stress[J]. Biochimica et Biophysica Acta Molecular Cell Research,2018,1865(5):721-733.

[27]  Kahroba H,Hejazi MS,Samadi N. Exosomes:From carcino genesis and metastasis to diagnosis and treatment of gastric cancer[J].Cellular and Molecular Life Sciences:CMLS,2019,76(9):1747-1758.

[28]  Chen B,Sun Y,Zhang J,et al. Human embryonic stem cell-derived exosomes promote pressure ulcer healing in aged mice by rejuvenating senescent endothelial cells[J]. Stem Cell Res Ther,2019,10(1):142.

[29]  Govindappa PK,Patil M,Garikipati VNS,et al. Targeting exosome-associated human antigen R attenuates fibrosis and inflammation in diabetic heart[J].FASEB Journal :Official Publication of the Federation of American Societies for Experimental Biology,2020,34(2):2238-2251.

[30]  Mathiyalagan P,Adamiak M,Mayourian J,et al. FTO-Dependent N(6)-Methyladenosine regulates cardiac function during remodeling and repair[J].Circulation,2019,139(4):518-532.

[31]  Zhu H,Zhang L,Zhai M,et al. GDF11 alleviates pathological myocardial remodeling in diabetic cardiomyopathy through SIRT1-dependent regulation of oxidative stress and apoptosis[J]. Frontiers in Cell and Developmental Biology,2021,9:686848.

[32]  Singla R,Garner KH,Samsam M,et al. Exosomes derived from cardiac parasympathetic ganglionic neurons inhibit apoptosis in hyperglycemic cardiomyoblasts[J]. Mol Cell Biochem,2019,462(1-2):1-10.

[33] Hu J,Wang S,Xiong Z,et al. Exosomal Mst1 transfer from cardiac microvascular endothelial cells to cardiomyocytes deteriorates diabetic cardiomyopathy[J].Biochim Biophys Acta Mol Basis Dis,2018,1864(11):3639-3649.

(收稿日期:2021-07-05)

猜你喜欢
外泌体治疗细胞
外泌体miRNA在肝细胞癌中的研究进展
间充质干细胞外泌体在口腔组织再生中的研究进展
DANDY CELLS潮细胞
循环外泌体在心血管疾病中作用的研究进展
潮细胞
细胞知道你缺氧了
Dandy Cells潮细胞 Finding a home
外泌体在肿瘤中的研究进展
1例急性肾盂肾炎伴有胡桃夹综合征保守治疗和护理
新生儿惊厥的临床诊断及治疗研究