郭志雄,孙冷雪,郑嘉敏,蔡灿军,王蓓,李开拓,潘腾飞,佘文琴,陈桂信,潘东明
荔枝果皮BPox的分离纯化及其在果实成熟过程中的表达
郭志雄1,2,孙冷雪2,郑嘉敏2,蔡灿军2,王蓓2,李开拓2,潘腾飞1,2,佘文琴1,2,陈桂信1,2,潘东明1,2
1福建农林大学园艺产品贮藏保鲜研究所,福州 350002;2福建农林大学园艺学院,福州 350002
【】植物第III类过氧化物酶具有广泛的生理功能。前期研究发现荔枝果皮具高活性的离子结合态过氧化物酶(BPox),与果实的着色、成熟密切关联,但其特性、作用机制不清楚。明确BPox的生化特性及其基因表达变化,为进一步研究BPox参与荔枝果实着色和成熟机制奠定基础。以‘乌叶’荔枝成熟果果皮为材料,通过提取及Streamline Phenyl、CM-52、Phenyl Sepharose HP和Superdex 200等柱层析,纯化获得BPox。测定BPox的最适反应pH、最适反应温度、底物特异性、抑制剂等生化特性。采用双倒数法测定其催化愈创木酚、(−)-表儿茶素的Km值及Vmax。应用MALDI串联质谱鉴定BPox的肽段序列,克隆BPox的cDNA。分别测定盛花后58、69、76、80和90 d荔枝果皮BPox的活性变化,应用荧光定量PCR分析BPox的基因表达变化。从荔枝果皮纯化得到BPox最主要的2个组分,分别命名为BPox-2和BPox-3。凝胶过滤层析和SDS-PAGE结果显示,BPox-2和BPox-3的表观分子量分别约为30 kD和34 kD。BPox-2和BPox-3的最适反应pH均为6.0,最适反应温度分别为40℃和45℃;二者具有相似的底物特异性;DTT、ASA和L-Cys等能强烈抑制其活性。BPox-2和BPox-3催化愈创木酚的Km值分别为2.97和2.58 mmol∙L-1,其Vmax分别为38.72×106和23.06×106U∙mg-1;其催化(−)-表儿茶素的Km值分别为3.49和3.24 mmol∙L-1,Vmax分别为38.72×106和23.06×106U∙mg-1。尽管BPox-2和BPox-3的肽质量指纹(PMF)不同,串联质谱分析显示,二者均具一个序列为TASLSAANSDLPSPFADLATLIAR的胰酶水解肽段。克隆得到的cDNA,大小为960 bp,共编码319个氨基酸。cDNA编码的多肽链N端包含1段26个氨基酸残基的信号肽,C端缺乏液泡分选序列,具1个潜在的N-糖基化修饰位点。幼果期,荔枝果皮BPox的活性表现弱;至盛花后76 d,果皮开始着色变红,BPox的活性迅速启动升高直至果实成熟。qPCR的结果显示,在盛花后的58和69 d,果皮的转录水平很低;盛花后76 d,的表达急剧上升,达到高峰,为盛花后69 d的60.56倍,而后下降。至盛花后90 d,其表达水平又显著上升。荔枝果皮的BPox-2与BPox-3最适反应pH、最适反应温度、底物特异性等与荔枝果皮可溶性Pox组分相似,但其对愈创木酚和(−)-表儿茶素的催化效率显著高于SPox。BPox-2与BPox-3同为所编码,因翻译后修饰差异而形成同工酶。参与荔枝果皮的着色和成熟进程,其活性受转录水平调控。
荔枝;结合态过氧化物酶;纯化;质谱鉴定;基因表达;着色和成熟
【研究意义】过氧化物酶(Pox)主要催化H2O2与各种氢(电子)供体之间的氧化还原反应,普遍存在于动物、植物和微生物。植物Pox超家族可分为I类、II类和III类等3种不同类型。源于高等植物的第III类Pox(EC 1.11.1.7)是细胞系统的守护者(caretaker),具有广泛的生理功能,通过分泌至液泡或者胞外,参与植物诸如胁迫反应、生长素代谢、木质素合成、细胞壁代谢、自由基清除等各种反应及各个过程[1-3]。有研究发现,Pox参与果实的着色、成熟[4-5]。探讨Pox参与果实发育的作用机制,对果实品质形成及其调控研究意义显著。【前人研究进展】植物Pox存在可溶态、结合态以及束缚态等3种不同的形式,束缚态以共价结合方式存在于细胞壁[6]。在荔枝中,由于Pox与采后果皮迅速酶促褐变的密切关联性使其颇受关注[7-13],但前人对荔枝Pox的研究都集中于可溶态部分,对果皮中的结合态Pox(BPox)只有初步的分析[13-14]。笔者前期的研究发现,前人采用去垢剂(Triton X-100)提取荔枝果皮的BPox很不充分,只能获得其中的个别组分[15]。前期的研究还发现,果皮BPox表现为碱性,组分丰富;动态观测显示,幼果期果皮BPox活性微弱,转色期开始,BPox骤然表现活跃,活性迅速上升直至果实成熟。【本研究切入点】目前的研究已初步表明,BPox与荔枝果实的发育、成熟关系密切,但其特性、作用机制不明。【拟解决的关键问题】本研究以‘乌叶’荔枝果实为材料,开展果皮BPox组分的分离纯化、生化特性分析、质谱鉴定和cDNA克隆研究,分析其在果实转色和成熟过程中的基因表达变化,为进一步揭示其参与荔枝果实的发育、成熟及果实采后衰老、褐变的机制奠定基础。
试验于2016—2017年在福建农林大学进行。
试验所使用的‘乌叶’荔枝果实采自福建省漳州市,分别于盛花后58、69、76、80和90 d采摘不同发育阶段的果实。果实于当天早晨采摘,立即夹冰运回实验室。每次选取发育一致的果实,取果皮,液氮速冻3—5 min,置于-80℃冰箱保存备用。
荔枝果皮BPox的提取参照王蓓等[15]的方法,做适当调整。取盛花后90 d果实的果皮100 g,经反复提取、离心去除可溶性蛋白(包括可溶性Pox)。在残渣中加入BPox提取缓冲液(0.1 mol∙L-1Tris- HCl(pH 8.0),20%(v/v)甘油,3.0 mol∙L-1NaCl,0.1%(v/v)Triton X-100)500 mL,16℃振荡提取1 h;4℃下19 000×离心20 min。上清液为BPox粗酶液。
Streamline Phenyl柱(Amersham Phamarcia产品,2.6 cm×15 cm)以BPox提取缓冲液平衡4—5个柱体积。粗酶液上柱,以2个柱体积平衡缓冲液洗柱,以10 mmol∙L-1Tris-HCl(pH 8.0),20%甘油,0.1% Triton X-100洗脱获得BPox活性部分并透析除盐48 h。
CM-52柱(Whatman产品,1.6 cm×15 cm)以10 mmol∙L-1Tris-HCl(pH 8.0),20%甘油缓冲液平衡。将透析后的酶液上柱,平衡缓冲液洗柱,以0—0.3 mol∙L-1NaCl进行线性梯度洗脱。分部收集,检测活性。分别收集合并两个主要活性峰,并命名为BPox-2和BPox-3,用于Phenyl疏水层析纯化。
Phenyl Sepharose HP柱(Amersham Phamarcia产品,1.6 cm×15 cm)以40 mmol∙L-1Tris-HCl(pH 8.0),25%甘油,1.1 mol∙L-1(NH4)2SO4缓冲液平衡4—5个柱体积。将BPox-2和BPox-3对平衡液按1﹕20稀释,分别上柱。洗柱,以1.1—0 mol∙L-1(NH4)2SO4逆梯度洗脱。分别检测活性,合并活性峰管。采用Ultra 4(Millipore产品,10K)进行离心超滤,浓缩至400—500 μL,用于分子筛色谱。
Superdex 200柱(Amersham Phamarcia产品,1.6 cm×66 cm)以50 mmol∙L-1Tris-HCl(pH 8.0),100 mmol∙L-1NaCl,10%甘油缓冲液平衡。样品分别过柱、洗脱。检测活性,合并活性峰管,超滤浓缩获得纯化的BPox。调整甘油终浓度至20%,将纯化的BPox-2和BPox-3置于-40℃保存备用。
采用BCA微量法进行蛋白质定量测定,BCA试剂盒购于上海生工生物工程有限公司。按试剂盒说明书进行定量操作。
非变性阴极凝胶电泳及酶染显色按照王蓓等[15]的方法。SDS-PAGE按Guo等[16]的方法。分子量标准采用Takara公司的Protein Molecular Weight Marker(High)。按Blum等[17]的方法进行银盐染色。
pH在3.0—6.0采用磷酸-柠檬酸缓冲液,pH 6.0—8.0采用磷酸缓冲液,分别测定BPox的最适反应pH,重复3次。
以50 mmol∙L-1磷酸缓冲液(pH 6.0)为反应缓冲系,在15—70℃条件下分别测定BPox的最适催化反应温度;测定BPox对不同酚类底物的特异性;测定不同金属离子及各抑制剂对BPox相对活性的影响;分别测定BPox催化愈创木酚和(−)-表儿茶素的Km值和Vmax。每个反应均重复3次,规定470 nm条件下每min变化0.001为1个酶活力单位(U)。
将SDS-PAGE后银盐染色显色的BPox条带用干净的刀片切出。按李开拓[18]的方法,将凝胶切成小块,脱色、干燥;Trypsin酶解;肽段经提取、干燥和溶解;之后采用AB SCIEX 5800质谱仪进行MALDI-TOF/ TOF分析。应用Mascot工具对荔枝转录组数据进行本地化检索匹配鉴定。
按王蓓[19]的方法提取荔枝果皮总RNA。采用Invitrogen公司的SuperScriptTMFirst-Strand Synthesis System合成第一链cDNA。根据质谱的匹配结果,设计开放阅读框(ORF)扩增引物,BPx_F:5′-ATGGCTT CCACTAGTACAATCCAGT-3′,BPx_R:5′-TCAGTTG ACAGCGCTGCAAACGCT-3′;以cDNA为模板,对上述引物进行PCR扩增,产物与T载体连接,转化、鉴定并进行测序。
分别取不同发育时期的果皮,按王蓓等[15]的方法进行BPox的提取和活性测定,3次重复。
应用荧光定量PCR分析荔枝果实转色与成熟过程果皮BPox的转录水平变化。分别提取不同发育时期果皮的总RNA,采用TaKaRa公司的PrimeScript™ RT reagent Kit with gDNA Eraser进行cDNA合成;应用Primer Premier 5.0设计BPox的qPCR引物,分别为:Bpx_qF:5′-CGAGATGGAGTTGTCTTGCTTGGAG -3′和Bpx_qR:5′-TGGTTTCGTTGTAGATGCGGTTGC -3′,选择为内参基因,设计一对引物,分别为:Act_qF:5′-ACTGGTGTGATGGTTGGTATGG-3′和Act_qR:5′-GTTCAATCGGGTATTTCAAGGTAAG-3′,采用Genestar公司的SYBR试剂,运用Jena公司的PCR仪QTOWER3进行扩增和溶解曲线分析。将盛花后58 d的表达量定为1,按Livak和Schmittgen[20]提出的2-ΔΔCt法计算相对表达量并进行统计分析。
运用Excel 2010进行方差分析,采用法进行数据的多重比较(<0.01)。
将制得的荔枝果皮BPox粗酶液过Streamline Phenyl柱,采用一步洗脱,得到单一洗脱活性峰,洗脱峰具一定的拖尾特性(数据未显示)。合并活性部分共得酶液约50 mL,使BPox得以高效浓缩。
膜透析浓缩后的酶液过阳离子交换纤维素CM-52柱,以0—0.3 mol∙L-1NaCl 进行线性梯度洗脱。结果显示,荔枝果皮的BPox可进一步分辨为3个主要的活性峰;其中,第1峰活性较低且与第2峰有粘连,第2个活性峰最大,第3活性部分洗脱出峰稍宽(图1-A)。将3个活性峰管分别收集合并。非变性阴极电泳酶染结果显示,3个活性峰均表现为双谱带型,第2和第3活性峰分别为荔枝果皮BPox最主要的两个组分(图1-B)。活性弱的第1组分峰BPox-1和笔者之前对荔枝果皮BPox进行分离纯化的初步研究结果吻合[21]。将两个主要活性组分分别命名为BPox-2和BPox-3,进行进一步的柱层析纯化。
1:BPox粗酶液;2:BPox-1;3:BPox-2;4:BPox-3 1: crude extract of BPox; 2: BPox-1; 3, BPox-2; 4: BPox-3
BPox-2和BPox-3在Phenyl Sepharose柱疏水层析及其之后的Superdex 200分子筛色谱均表现为单一的洗脱活性峰,这表明各自组分内的酶谱带性质极为接近而不能相互分离。分子筛色谱的结果显示BPox-2和BPox-3的分子量均为30 kD(图2)。
分子量标准由甲状腺球蛋白(670 kD)、g-球蛋白(158 kD)、卵清蛋白(44 kD)、肌红蛋白(17 kD)和维生素B12(1.36 kD)组成
10%—15%的线性梯度SDS凝胶电泳后的银染结果显示,BPox-2和BPox-3获得了纯化,其中未显示可见的杂蛋白;两组分均显示双蛋白条带,对应于组分内的双酶谱带。其表观分子量极其接近,约为34 kD(图3)。说明荔枝果皮BPox的这两个组分均为单体蛋白。
2.2.1 最适反应pH 不同pH条件下的活性测定结果显示,BPox-2和BPox-3催化愈创木酚反应的最适pH均为6.0。两者在不同pH下的活性变化趋势十分相似,在pH 5.0—7.0内,能维持较高的活性;pH<5.5或者pH>7.0,二者的活性下降很快(图4)。
2.2.2 最适反应温度 不同温度下的活性测定结果显示,两组分对不同温度的反应趋势一致,最适温度为40℃。温度超过50℃,其活性下降明显加快(图5)。
2.2.3 对不同底物的特异性 底物特异性分析结果表明,荔枝果皮BPox对不同酚类底物表现出不同的活性,但两组分对不同底物的比活力大小变化趋势基本一致,愈创木酚和(−)-表儿茶素为其最适底物,反应活性最大(表1)。BPox对其余底物的催化反应活性各有不同,其中,BPox-2对4-甲基邻苯二酚、焦性没食子酸、邻苯二酚的催化活性仅分别为愈创木酚的14.52%、10.12%和7.21%,而BPox-3分别为愈创木酚的12.53%、11.50%和10.98%;对没食子酸、绿原酸、4-甲氧基酚和对苯二酚等底物的催化反应活性为弱;对间苯二酚、藜芦醇、苯甲醇等底物未显示活性。
图4 不同pH对BPox-2和BPox-3活性的影响
图5 不同温度对BPox-2和BPox-3活性的影响
表1 BPox-2/3对不同底物的比活力
2.2.4 金属离子及抑制剂的影响 以愈创木酚为底物,测定金属离子及抑制剂对BPox活性的影响。结果显示,金属离子Mn2+、Ca2+、Fe3+对BPox-2、BPox-3的抑制作用较微弱,在Cu2+的作用下,BPox表现的相对活性有所增加;螯合剂EDTA对其活性影响弱;L-半胱氨酸强烈抑制两组分的活性。终浓度为0.1 mmol∙L-1时,其相对活性只残留约20%;DTT和ASA几乎完全抑制两组分的活性(表2)。
2.2.5 催化不同底物反应的Km值和Vmax根据双倒数法进行米氏常数的测定,结果显示BPox-2和BPox-3对愈创木酚的Km值分别为2.97和2.58 mmol∙L-1,二者对愈创木酚的亲和性差异不大;但BPox-2催化愈创木酚的最大反应初速度Vmax为38.60×106U∙mg-1,显著大于BPox-3的19.85×106U∙mg-1(图6)。同样,BPox-2和BPox-3对(−)-表儿茶素的Km值分别为3.49和3.24 mmol∙L-1,而其Vmax分别为38.72×106和23.06×106U∙mg-1(图7)。表明BPox-2和BPox-3对底物的亲和性基本一致,而BPox-2显示出更强的催化效率(Vmax/Km)。
表2 金属离子及抑制剂对BPox-2/3活性的影响
将荔枝果皮BPox-2和BPox-3两个组分内部的双谱带依SDS-PAGE分离,按从大至小,分别命名为BPox-2a、BPox-2b和BPox-3a、BPox-3b。分别对其胰酶酶解肽段进行质谱分析,结果显示,组分间的肽质量指纹(PMF)差异较大(图8、9);而组分内两个谱带的PMF高度相似,主要肽段一致,只是相对丰度存在一定的差别(数据未显示)。
对4个蛋白组分的部分肽段进行进一步的MS/ MS分析,并结合PMF数据,对荔枝转录组数据[23]进行检索匹配。结果显示,1个m/z为2 402.2的肽段为BPox-2和BPox-3所共有,其MS/MS的分析结果表明其为转录组中Unigene 0021422所编码(编码产物GenBank ID:696949335),而MS/MS解析的另外肽段同样匹配于该转录本(表3)。上述的质谱分析结果表明,荔枝果皮BPox-2和BPox-3为同一基因(后命名为)的编码产物因翻译后加工修饰的显著不同而形成明显差异的同工酶组分,而一些翻译后修饰的细微区别,导致组分内形成不同的谱带。
图6 BPox-2(A)和 BPox-3(B)催化愈创木酚反应的双倒数曲线
图8 BPox-2a的MALDI-TOF/MS的肽质量指纹图谱
图9 BPox-3a的MALDI-TOF/MS的肽质量指纹图谱
BPox-2/3的MS/MS结果显示,其匹配的cDNA包含一个完整的开放阅读框(ORF)。基于此,设计扩增的ORF引物,提取荔枝果皮总RNA,以其逆转录的cDNA为模板,通过PCR扩增获得1个大小约1 000 bp的特异产物。
克隆、测序的结果表明,该ORF大小为960 bp,共编码319个氨基酸,与BPox-2/3串联质谱解析的结果完全吻合(图10)。应用SignalP-5.0(http://www.cbs. dtu.dk/services/SignalP/)进行分析,结果显示该cDNA编码的多肽在N端包含一段26个氨基酸残基的信号肽。去除信号肽后,理论分子量为31.35 kD;其理论编码产物偏碱性,pI为7.71。NetNGlyc 1.0(http://www. cbs.dtu.dk/ser- vices/NetNGlyc/)在线分析显示,Asn211为一潜在的N型糖基化位点。
划线部分表示MALDI TOF MS/MS鉴定的BPox组分的共有肽段序列;标记为绿色和蓝色的部分分别表示为编码的信号肽和潜在的糖基化位点
表3 MALDI MS/MS解析BPox-2/3的肽段序列
盛花后58 d,‘乌叶’幼果果皮BPox的活性表现弱,为0.2167×104U∙g-1FW。至盛花后76 d,果实开始转色(图11-a),其果皮BPox活性显著上升,达9.95×104U∙g-1FW(<0.01);之后,果皮BPox的活性一直保持快速上升趋势,直至花后90 d果实成熟(图11-b)。而qPCR的结果显示,果实转色前,的转录水平很低;伴随果实着色开始,其表达水平达到高峰,为盛花后69 d的60.56倍,之后回落;盛花后80—90 d,果皮的表达仍呈显著上升趋势(图11-c)。
不同大写字母表示极显著差异(P<0.01) Different capital letters indicate significant difference at P<0.01
通过提取和多步骤的柱层析分离,纯化获得荔枝果皮BPox-2和BPox-3。对二者的生化特性分析表明,其最适pH、最适反应温度、底物特异性等总体表现一致,其特性和荔枝可溶性Pox(SPox)组分以及其他来源的Pox表现比较接近[10,19,24]。对比发现,荔枝果皮BPox对愈创木酚和(−)-表儿茶素的催化效率显著高于SPox组分[19]。(−)-表儿茶素是荔枝果皮重要的多酚类物质,是采后果皮PPO酶促褐变的直接底物[25-26]。初步研究表明,采后BPox活性变化显著,与荔枝果皮褐变关系紧密[21]。BPox与荔枝采后果皮内源多酚类物质代谢的关系,有待进一步的研究揭示。
一般而言,植物Pox为糖基化蛋白[6]。本研究应用MALDI串联质谱对BPox-2和BPox-3进行蛋白鉴定。以此为基础,克隆获得了荔枝的cDNA。分析显示,cDNA编码的多肽仅含1个潜在的糖基化位点,其大小与纯化得到的酶蛋白分子很接近。这说明,荔枝BPox肽链上的糖基及其他非氨基酸成分所占比重低,侧链修饰程度轻。对比笔者之前的研究发现,荔枝SPox cDNA编码的氨基酸序列(GenBank ID:205326621)则多达9个潜在的糖基化位点,而理论编码产物与纯化得到的2个酶组分大小的比值分别为0.802和0.712,显示其翻译后的糖基化及其他修饰程度大大高于前者[19]。
此外,根据C端液泡分选信号(vacuolar sorting signals,VSS)序列的有无,植物分泌型Pox分为液泡型和胞外型[27]。研究显示,只有液泡型Pox具C端延伸(C-terminal extension,CE)结构[1-2];尽管保守性不高,CE具VSS序列[27-29]。通过与定位于液泡的辣根Pox C1a、大豆Pox等以及与荔枝cDNA编码的多肽进行序列比对,显示cDNA编码产物短缩的C端缺乏VSS序列,预示果皮BPox-2/3定位于胞外。这和荔枝BPox呈离子结合态,可能结合于细胞壁或质膜系统相吻合。关于其结构特点及与其功能的关联性如何有待进一步的研究确认。
动态观测的结果表明,荔枝果实在转色前,其果皮BPox很不活跃,而伴随着果皮转色,BPox的活性迅速启动升高直至果实成熟,这和笔者前期的研究结果一致[15]。而qPCR的结果也显示,在果皮转色期开始,表达水平大幅上升形成峰值,和BPox的活性变化趋势一致;但之后,其表达水平回落;伴随果实成熟进程,其表达水平又显著上升,与活性变化一致。综上,果皮BPox的变化受转录水平调控,其变化与果实成熟进程关系密切。在草莓中发现一个编码碱性Pox的基因,研究显示该基因主要参与果实成熟进程中木质素的生物合成,的高表达会竞争多酚类物质的代谢前体,改变其代谢流的走向,从而抑制果实花色苷的生物合成和累积[4]。而其作为果实木质素合成的关键基因,对于提高果实质地具有重要作用[5]。在离体培养的李愈伤组织中也发现了1个与花色苷累积特异相关的结合态Pox组分[30]。花色苷是荔枝果实成熟果皮着色最重要的色素类物质[13,31-32],关于BPox的亚细胞定位,及其与果皮木质素代谢、花色苷积累的关系等,是进一步需要研究的重点问题。
从成熟荔枝果皮分离纯化获得离子结合态过氧化物酶最主要的2个组分BPox-2和BPox-3。对其分析结果显示,其最适反应pH、最适反应温度、底物特异性等酶学特性与荔枝果皮可溶性Pox(SPox)组分相似,但BPox对愈创木酚和(−)-表儿茶素的催化效率显著高于SPox。MALDI串联质谱分析结果表明,BPox-2与BPox-3应同为所编码,因翻译后修饰差异而形成同工酶。cDNA克隆和序列分析发现,其编码的多肽链大小与纯化得到的BPox接近,结果表明,相较于SPox,果皮BPox的翻译后修饰程度较低。对果皮BPox活性和基因转录水平的动态变化分析显示,参与荔枝果皮的着色和成熟进程,其活性受转录水平调控。
[1] HIRAGA S, SASAKI K, ITO H, OHASHI Y, MATSUI H. A large family of class III plant peroxidases. Plant and Cell Physiology, 2001, 42(5): 462-468.
[2] COSIO C, DUNAND C. Specific functions of individual class III peroxidase genes. Journal of Experimental Botany, 2008, 60(2): 391-408.
[3] ZIPOR G, OREN-SHAMIR M. Do vacuolar peroxidases act as plant caretakers? Plant Science, 2013, 199/200: 41-47.
[4] RING L, YEH S Y, HÜCHERIG S, HOFFMANN T, BLANCO- PORTALES R, FOUCHE M, VILLATORO C, DENOYES B, MONFORT A, CABALLERO J L, MUÑOZ-BLANCO J, GERSHENSON J, SCHWAB W. Metabolic interaction between anthocyanin and lignin biosynthesis is associated with peroxidase FaPRX27 in strawberry fruit. Plant Physiology, 2013, 163(1): 43-60.
[5] YEH S Y, HUANG F C, HOFFMANN T, MAYERSHOFER M, SCHWAB W. FaPOD27 functions in the metabolism of polyphenols in strawberry fruit (sp.). Frontiers in Plant Science, 2014, 5: 518.
[6] 田国忠, 李怀方, 裘维蕃. 植物过氧化物酶研究进展. 武汉植物学研究, 2001, 19(4): 332-344.
TIAN G Z, LI H F, QIU W F. Advances on research of plant peroxidases. Journal of Wuhan Botanical Research, 2001, 19(4): 332-344. (in Chinese)
[7] UNDERHILL S J R, CRITCHLEY C. Cellular localisation of polyphenol oxidase and peroxidase activity inSonn. Pericarp. Australian Journal of Plant Physiology, 1995, 22(4): 627-632.
[8] GONG Q Q, TIAN S P. Partial characterization of soluble peroxidase in pericarp of litchi fruit. Progress in Biochemistry and Biophysics, 2002, 29(6): 891-896.
[9] JIANG Y, DUAN X, JOYCE D, ZHANG Z, Li J. Advances in understanding of enzymatic browning in harvested litchi fruit. Food Chemistry, 2004, 88: 443-446.
[10] 庞学群, 段学武, 张昭其, 徐凤彩, 季作梁. 荔枝果皮过氧化物酶的纯化及部分酶学性质研究. 热带亚热带植物学报, 2004, 12(5): 449-454.
PANG X Q, DUAN X W, ZHANG Z Q, XU F C, JI Z L. Purification and some properties of peroxidase from pericarp of litchi (Sonn.). Journal of Tropical and Subtropical Botany, 2004, 12(5): 449-454. (in Chinese)
[11] ZHANG Z Q, PANG X Q, DUAN X W, JI Z L, JIANG Y M. Role of peroxidase in anthocyanin degradation in litchi fruit pericarp. Food Chemistry, 2005, 90: 47-52.
[12] 郑雯, 张永丽, 王家保, 金志强. 荔枝果皮2个POD同源基因的生物信息学分析及酶活测定. 热带作物学报, 2011, 32(3): 437-442.
ZHENG W, ZHANG Y L, WANG J B, JIN Z Q. Bioinformatics analysis and function forecast of two POD genes inpericarp. Chinese Journal of Tropical Crops, 2011, 32(3): 437-442. (in Chinese)
[13] REICHEL M, TRIANI R, WELLHÖFER J, SRUAMSIRI P, CARLE R, NEIDHART S. Vital characteristics of litchi (Sonn.) pericarp that define postharvest concepts for Thai cultivars. Food and Bioprocess Technology, 2013, 6(5): 1191-1206.
[14] 吴振先, 苏美霞, 陈维信, 胡桂兵. 贮藏荔枝果皮多酚氧化酶及过氧化物酶与褐变的研究. 华南农业大学学报, 1998, 19(1): 12-15.
WU Z X, SU M X, CHEN W X, HU G B. Studies on polyphenol oxidase and peroxidase and litchi pericarp browning during storage. Journal of South China Agricultural University, 1998, 19(1): 12-15. (in Chinese)
[15] 王蓓, 郭志雄, 柯思敏, 潘腾飞, 潘东明. 荔枝果皮的结合态POD及其在果实生长发育过程中的变化. 果树学报, 2014, 31(4): 642-647, 754.
WANG B, GUO Z X, KE S M, PAN T F, PAN D M. Membrane/ wall-bound peroxidases in litchi pericarp and their changes during fruit development. Journal of Fruit Science, 2014, 31(4): 642-647, 754.(in Chinese)
[16] GUO Z X, PAN T F, LI K T, ZHONG F L, LIN L, PAN D M, LU L X. Cloning of NAD-SDH cDNA from plum fruit and its expression and characterization. Plant Physiology and Biochemistry, 2012, 57: 175-180.
[17] BLUM H, BEIER H, GROSS H J. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis, 1987, 8(2): 93-99.
[18] 李开拓. 荔枝果实成熟过程中的差异蛋白质组学研究[D]. 福州: 福建农林大学, 2011.
LI K T. Studies on differential proteomics during fruit ripening in litchi (Sonn.) [D]. Fuzhou: Fujian Agriculture and Forestry University, 2011. (in Chinese)
[19] 王蓓. 荔枝果皮可溶性POD组分的纯化、鉴定及其生化特性研究[D]. 福州: 福建农林大学, 2014.
WANG B. Purification, identification and characterization of soluble peroxidase isoforms in litchi pericarp [D]. Fuzhou: Fujian Agriculture and Forestry University, 2014. (in Chinese)
[20] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCtMethod. Methods, 2001, 25(4): 402-408.
[21] 柯思敏. 荔枝结合态过氧化物酶分离纯化及其性质的初步研究[D]. 福州: 福建农林大学, 2015.
KE S M. A preliminary study on the purification and characterization of bound peroxidases in litchi pericarp [D]. Fuzhou: Fujian Agriculture and Forestry University, 2015. (in Chinese)
[22] 李开拓, 郭志雄, 潘东明, 钟凤林, 潘腾飞. 荔枝果皮总蛋白质提取及双向电泳体系的建立. 热带亚热带植物学报, 2011, 19(1): 69-74.
LI K T, GUO Z X, PAN D M, ZHONG F L, PAN T F. Extraction of total protein from litchi pericarp and establishment of two-dimensional electrophoresis. Journal of Tropical and Subtropical Botany, 2011, 19(1): 69-74. (in Chinese)
[23] LAI B, HU B, QIN Y H, ZHAO J T, WANG H C, HU G B. Transcriptomic analysis ofpericarp during maturation with a focus on chlorophyll degradation and flavonoid biosynthesis. BMC Genomics, 2015, 16: 225.
[24] ONSA G H, SAARI N B, SELAMAT J, BAKAR J. Purification and characterization of membrane-bound peroxidases from. Food Chemistry, 2004, 85: 365-376.
[25] SUN J, JIANG Y M, WEI X Y, SHI J, YOU Y L, LIU H, KAKUDA Y, ZHAO M M. Identification of (-)-epicatechin as the direct substrate for polyphenol oxidase isolated from litchi pericarp. Food Research International, 2006, 39: 864-870.
[26] LIU L, CAO S Q, XIE B J, SUN Z D, LI X Y, MIAO W H. Characterization of polyphenol oxidase from litchi pericarp using (-)-epicatechin as substrate. Journal of Agriculture and Food Chemistry, 2007, 55: 7140-7143.
[27] MATSUI T, TABAYASHI A, IWANO M, SHINMYO A, KATO K, NAKAYAMA H. Activity of the C-terminal-dependent vacuolar sorting signal of horseradish peroxidase C1a is enhanced by its secondary structure. Plant and Cell Physiology, 2011, 52(2): 413-420.
[28] MATSUI T, NAKAYAMA H, YOSHIDA K, SHINMYO A. Vesicular transport route of horseradish C1a peroxidase is regulated by N- and C-terminal propeptides in tobacco cells. Applied Microbiology and Biotechnology, 2003, 62(5): 517-522.
[29] SCHNELL J A, HAN S Y, MIKI B L, JOHNSON D A. Soybean peroxidase propeptides are functional signal peptides and increase the yield of a foreign protein. Plant Cell Reports, 2010, 29(9): 987-996.
[30] ZHOU S, SAUVE R, HOWARD E. Identification of a cell wall peroxidase in red calli ofThunb. Plant Cell Reports, 2002, 21(4): 380-384.
[31] REICHEL M, CARLE R, SRUAMSIRI P, NEIDHART S. Changes in flavonoids and nonphenolic pigments during on-tree maturation and postharvest pericarp browning of litchi (Sonn.) as shown by HPLC-MSn. Journal of Agricultural and Food Chemistry, 2011, 59: 3924-3939.
[32] FANG F, ZHANG X L, LUO H H, ZHOU J J, GONG Y H, LI W J, SHI Z W, HE Q A, WU Q, LI L, JIANG L L, CAI Z G, OREN-SHAMIR M, ZHANG Z Q, PANG X Q. An intracellular laccase is responsible for epicatechin-mediated anthocyanin degradation in litchi fruit pericarp. Plant Physiology, 2015, 169(4): 2391-2408.
Purification, Characterization and Expression of Ionically Bound Peroxidase in Litchi Pericarp during Coloration and Maturation of Fruit
1Institute of Postharvest Science and Technology of Horticultural Products, Fujian Agriculture and Forestry University, Fuzhou 350002;2College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002
【】In a previous study, the considerable activity of ionically bound peroxidase (BPox) was found in litchi pericarp. The BPox revealed a close relationship with the fruit maturation, but its role was unclear. This work was aimed to elucidate the biochemical properties and gene expression pattern of BPox for the further investigation of its involvement in the process of litchi coloration and maturation.【】The mature pericarp of litchi (Sonn. cv. Wuye) was used as material, and the BPox was extracted and purified through column chromatography of Streamline Phenyl, CM-52, Phenyl Sepharose and Superdex-200, respectively. The optimal pH and temperature, the substrate specificity and the inhibitors were measured, respectively. The Kmvalues of BPox for guaiacol and (-)-epicatechin and Vmaxvalues were determined by using double reciprocal plots, respectively. The purified Bpox protein was conducted to SDS-PAGE and in-gel digestion by trypsin, and the sequences of the peptide fragments were identified by using MALDI tandem TOF MS. Total RNA was isolated from litchi pericarp, and the cDNA encoding BPox was cloned. The fruits were harvested 58, 69, 76, 80 and 90 days after full blooming (DAFB), the determination of BPox activity changes in the pericarp and the analysis of BPox gene expression using real-time quantitative PCR, were performed, respectively.【】Two most major fractions of ionically bound cationic peroxidase, named BPox-2 and BPox-3, were purified from litchi pericarp, respectively. The apparent molecular weights of the two isoforms were the same, and were estimated to be 30 and 34 kD by gel filtration and SDS-PAGE, respectively. For the BPox-2 and the BPox-3, the optimal pH was 6.0, and the optimal temperature was 40℃ and 45℃, respectively. In the presence of H2O2, similar substrate affinity was revealed, while guaiacol and (-)-epicatechin (EC) were the favorable substrates for the two BPoxs. The metal ions test exhibited poor effect on the activity and the most effective inhibitors for litchi BPoxs were dithiothreitol, ascorbate and L-cysteine. The Kmvalues of BPox-2 and BPox-3 for guaiacol were 2.97 and 2.58 mmol∙L-1, and the Vmaxvalues were 38.60×106and 19.85×106U∙mg-1, respectively. The Kmvalues of BPox-2 and BPox-3 for EC were 3.49 and 3.24 mmol∙L-1, and the Vmaxvalues were 38.72×106and 23.06×106U∙mg-1, respectively, illustrating that the catalytic efficiency (Vmax/Km) of BPox-2 was higher than that of BPox-3. The result of MALDI TOF MS demonstrated differences of peptide mass fingerprint (PMF) between the BPox-2 and the BPox-3; however, a common peptide fragment digested from the two peroxidases corresponding to the amino acid sequence of TASLSAANSDLPSPFADLATLIAR was identified by tandem MS and Mascot database search. The ORF of cDNA for litchi, containing 960 bp in length was cloned, encoding a polypeptide of 319 amino acid residue. The results of analysis revealed that, the polypeptide coded by the cDNA contained a putative 26-mer signal peptide and was absent of vacuolar sorting sequence on the C-terminus, and only one potential N-glycosylation site was found in the sequence. The molecular weight and the pI value of the mature polypeptide were predicted to be 31.35 kD and 7.71, respectively. The activity of BPox was very weak in the pericarp of young fruit. From the onset of pericarp coloration at 76 DAFB, the BPox activity increased remarkably, and then, it rose significantly coinciding with the subsequent process of fruit maturation until 90 DAFB.The qPCR results showed that the transcript level ofgene was low in the pericarp of young fruit at 58 DAFB and 69 DAFB. It increased dramatically, reached a peak at 76 DAFB, being 60.56-fold of that at 69 DAFB, and then declined. The transcript level increased significantly with the process of fruit maturation at 90 DAFB.【】Characterization of the BPox illustrated that, its pH optimal, temperature optimal and substrate specificity etc., were similar to those of soluble peroxidases (SPox) in litchi pericarp and other plant peroxidases; however, the catalytic efficiency (Vmax/Km) of BPox for guaiacol and EC was much higher than that of litchi SPox. The results of MALDI MS/MS identification suggested that the BPox-2 and the BPox-3 were the two isoforms coded by thegene and distinct due to different post-translational modification. The molecular weight of the predicted mature polypeptide coded by thecDNA was near to that of the purified protein, suggesting its relative low degree of post-translational modification. Litchiplayed a role in the pericarp maturation and was regulated at the transcriptional level.
litchi; ionically bound peroxidase; purification; MALDI MS/MS identification; gene expression; coloration and maturation
10.3864/j.issn.0578-1752.2021.16.012
2020-09-18;
2020-12-08
福建省科技重大专项(2013NZ0002-1D)、福建农林大学科技创新专项基金(KFA17364A)
郭志雄,Tel:0591-83789241;E-mail:gzhhs@163.com。通信作者郭志雄。通信作者佘文琴,Tel:0591-83789241;E-mail:wenqinshe@163.com
(责任编辑 赵伶俐)