朱玉君 左紫薇 张振华 樊叶杨
一种水稻微效QTL精细定位和克隆新途径
朱玉君*左紫薇 张振华 樊叶杨
(中国水稻研究所 水稻生物学国家重点实验室/国家水稻改良中心, 杭州 310006;*通信联系人,E-mail:zhuyujun@caas.cn)
水稻重要农艺性状一般由少数主效QTL和大量微效QTL共同控制。水稻主效QTL克隆已取得显著进展,而微效QTL由于遗传作用弱,表型鉴定易受测量误差影响,克隆进展缓慢,但微效QTL在水稻重要农艺性状调控中的作用不容忽视。本文介绍了一种水稻微效QTL精细定位和克隆的新途径。该途径包含2个阶段:1)应用剩余杂合体构建近等基因系群体进行目标QTL的精细定位;2)应用基因编辑技术创制候选基因突变体验证基因功能。应用该策略笔者所在团队在水稻第1染色体长臂精细定位了6个微效粒重和粒型QTL,并成功克隆首个微效粒重QTL。该技术可在方法上为水稻QTL克隆及新种质创制提供更多选择。
水稻;粒型;微效QTL;图位克隆
水稻是我国最主要的粮食作物之一,60%以上的人口以米饭为主食。有效穗数、每穗实粒数和千粒重是构成水稻产量的三个要素,它们都是典型的数量性状,由少数主效QTL和大量微效QTL共同控制。与有效穗数和每穗实粒数相比,千粒重不易受试验环境影响,稳定性最高,粒数次之,穗数最低。与之相对应,在克隆的产量性状QTL中,以穗数为首要目标者0个;以粒数为首要目标者2个,分别为和[1-2],另有多个抽穗期QTL表现出对粒数的多效性作用,如[3]、[4]、/[5-6]、[7]和[8]等;以粒重粒型为首要目标者21个[9-15]。
虽然粒重粒型QTL克隆数目较多,但与初定位的QTL个数相比,占比依然很低。在Gramene数据库中共收录了568个粒重和粒型QTL,分布于水稻全部染色体的各个区域,但已克隆的个数仅占收录总数的3.7%。究其原因,绝大部分QTL效应很小,易受表型鉴定误差影响,精细定位难度大;另外,等位基因之间的遗传作用差异小,遗传互补效果不明显,基因功能验证困难。但是,根据数量遗传学理论和现代分子定位结果,微效QTL在水稻重要农艺性状调控中也扮演着重要角色[16],无论是机理剖析,还是育种应用,这类QTL都不容忽视。
近10年来,笔者所在小组以控制水稻粒重和粒型的微效QTL为研究对象,将多个微效QTL界定于涵盖少数注释基因的区间内[15, 17-20]。这些座位上双亲等位基因间的遗传效应差异很小,如千粒重的加性效应最小仅为0.1 g[17],难以直接采用遗传互补的方法进行验证。幸而CRISPR/Cas9基因敲除技术的出现及不断完善[21-23],特别是在该技术成功应用于水稻基因组研究后[24],在各实验室迅速普及[11, 25-26]。得益于该技术,我们成功克隆了首个微效粒重QTL[15],初步建立了水稻微效QTL克隆的技术途径。本文主要介绍了笔者所在课题应用该途径在水稻第1染色体长臂微效粒重粒型QTL精细定位和图位克隆中取得的进展[15, 17-20],以期通过对该技术途径的介绍,在方法上为QTL图位克隆提供更多选择。
ZS97−珍汕97;MY46−密阳46;A−加性效应,指一个密阳46等位基因取代珍汕97等位基因所产生的遗传效应;R2−QTL效应对表型方差的贡献率;TGW−千粒重(g);GL−粒长(mm);GW−粒宽(mm)。ns−不显著。
Fig.1.Six minor QTL for grain weight and size detected in the 7.1 Mb region on the long arm of chromosome 1 in rice.
微效QTL由于精细定位和基因功能验证困难的原因,相比主效QTL,研究进展缓慢。在已克隆的21个粒重粒型QTL中,除外[15],其余20个均表现为主效作用。笔者所在课题通过多年探索在水稻第1染色体长臂7.1 Mb区间精细定位到6个控制粒重和粒型的微效QTL,并成功克隆(图1),建立了一种克隆微效QTL的技术途径。该途径主要包含2个阶段:1)应用剩余杂合体构建近等基因系群体进行目标QTL的精细定位;2)应用基因编辑技术创制候选基因突变体验证基因功能。在精细定位阶段中,近等基因系(near isogenic line,NIL)的构建应用了遗传资源“剩余杂合体”(residual heterozygote,RH),即仅在包含QTL区间杂合,其余背景区间均为亲本纯合型的遗传材料。在基因功能验证阶段,突变体的创制采用CRISPR/Cas9基因敲除技术。
RH−剩余杂合体;SeqRHs−杂合区间连续排列的剩余杂合体;NIL−近等基因系。
<
Fig.2.Technical route for QTL fine-mapping.
整个精细定位技术路线如图2所示,具体流程如下所述:根据初定位结果,挑选1个杂合区间包含目标QTL的RH单株,自交构建F2群体(约300个单株),根据基因型挑选不同亲本纯合型单株各约30个,构建F2:3或NIL群体进行QTL分析,完成第一轮定位;结合定位结果在F2群体中挑选杂合区间更小且呈连续排列的剩余杂合体单株(sequential residual heterozygotes,SeqRHs),自交构建SeqRHs-F2群体,根据基因型挑选不同亲本纯合型单株构建SeqRHs-F2:3或SeqRHs-NIL群体,比较各分离群体的QTL分析结果缩小目标区间,完成第二轮定位;通过多轮定位将目标QTL作用区间精细定位至仅包含几个注释基因的区间。在此基础上,结合亲本间注释基因的序列差异、表达量差异以及基因编码产物等方面的信息,预测候选基因,再借助CRISPR/Cas9基因敲除技术创制突变体完成功能验证。下文主要介绍应用该方法在微效粒重和粒型QTL精细定位及图位克隆中取得的进展。
前期应用珍汕97(ZS97)和密阳46(MY46)衍生的重组自交系群体对产量及构成因子进行QTL分析,第1染色体长臂RZ730–RG381区间与多个粒重区间存在互作[27]。针对该区间,从ZS97/MY46的F9群体中筛选到1个目标区间为MY46纯合型的单株与ZS97回交2次,挑选1个在RM11448–RM11974区间(11.5 Mb)呈杂合的BC2F2单株开展精细定位。从该单株衍生的BC2F3群体挑选到3个SeqRHs,经自交和基因型检测构建3个SeqRHs-NIL群体。通过各分离区间的遗传作用比较,在该区间分解出2个控制千粒重的QTL,命名为和,前者位于区间RM11437–RM11615(3.6 Mb),ZS97等位基因增加粒重0.27 g;后者位于RM11615–RM11800(4.6 Mb),MY46等位基因增加粒重0.42 g[28](图1)。
针对所在3.6 Mb区间,在Guo等[28]构建的群体中筛选到1个BC2F8RH单株,从其衍生群体中筛选到4个BC2F10SeqRHs,经自交及基因型检测,构建4个BC2F11:12SeqRHs-NIL群体。经分析,从区间分解出2个控制千粒重的微效QTL,命名为和,前者位于Wn28447–RM11543(120.4 kb),控制粒重为主,ZS97等位基因增加粒重0.10 g;后者位于RM11554–RM11569(521.8 kb),通过增加粒长提高粒重,MY46等位基因增加粒长0.017 mm,增加粒重0.06 g[17](图1)。
针对所在4.6 Mb区间,在Guo等[28]构建的BC2F2群体中筛选到1个在RM11448–RM11974(11.5 Mb)区间呈杂合的单株,通过多代自交及标记检测,构建6个BC2F10:11SeqRHs-NIL群体。经各区间遗传效应比较,从区间分解出3个微效粒重QTL,命名为、和。其中,位于区间RM11730–RM11762(933.6 kb),主要控制千粒重,MY46等位基因提高粒重0.18 g;位于区间RM11781–RM11800(418.8 kb),通过增加粒长提高粒重,MY46等位基因增加粒长0.02 mm,增加粒重0.08 g;位于区间RM11800-RM11885(2.1 Mb),通过增加粒宽提高粒重,MY46等位基因增加粒宽0.02 mm,增加粒重0.12 g[18](图1)。之后,我们又分别对这3个微效粒重QTL进行精细定位和克隆。
2.3.1的精细定位
从ZS973/MY46的BC2F9群体中挑选1个RH单株,应用由其衍生的3个BC2F12SeqRHs-NIL群体将所在区间缩小至Wn32886–Wn33252(366.1 kb)。采用相同策略,进一步构建3套世代分别为BC2F14,BC2F16和BC2F17的SeqRHs-NIL群体,将精细定位至Wn33011–Wn33089(77.5 kb),MY46等位基因增加千粒重0.26 g,该区间内包含13个注释基因[20]。
2.3.2的图位克隆
从ZS973/MY46的BC2F9群体中挑选1个杂合区间为RM212–RM11800的RH单株。应用由其衍生的4个BC2F11:12和3个BC2F13:14SeqRHs-NIL群体,将精细定位至区间Wn34323–Wn34367(44.0 kb)。该微效QTL通过增加粒长提高粒重,MY46等位基因增加粒长0.021 mm,提高粒重0.13 g。应用CRISPR/Cas9敲除技术进行候选基因功能验证,确认编码VQ-motif蛋白的为的目标基因。在NIL中,两种纯合基因型的千粒重相差0.9%~2.0%,而敲除株系与野生型对照之间的千粒重差异达2.8%~9.8%,效应平均提高约6.1倍[15]。
2.3.3 qTGW1.2c分解成qGS1-35.2和qGW1-35.5
从ZS973/MY46的BC2F9群体中挑选1个杂合区间为RM11807–RM11842的RH单株,应用由其衍生的1个BC2F11:12和5个BC2F13:14SeqRHs-NIL群体,在区间又分解出2个微效粒型QTL,其中一个位于Wn35183–RM11828(132.4 kb),ZS97等位基因增加粒长0.027 mm,长宽比增加0.017,第1个分离标记位于基因组35.2 Mb位置,且主要控制粒形,将其命名为;另一个位于Wn35518–Wn35643(125.5 kb),MY46等位基因增加粒宽0.015 mm,增加粒重0.14 g,控制粒宽为主,将其命名为。针对,进一步构建3个BC2F14:15和2个BC2F15:16SeqRHs-NIL群体,将其精细定位至Wn35183–RM11824区间,大小约57.7 kb(图2),该区间内共包含6个注释基因[19]。目前已初步完成候选基因的功能验证。
上述研究有力地证明了应用剩余杂合体策略构建SeqRHs-NIL群体能有效分解和精细定位微效QTL;同时,应用基因敲除技术可验证微效QTL的候选基因功能,并在目标基因座位创制新的等位变异;另外,该结果也为控制同一性状的QTL往往是成簇分布的理论提供新的证据。
粒重和粒型基因的克隆对水稻高产和外观品质的改良具有重要作用。研究表明这些已克隆的粒重粒型QTL涉及植物激素、泛素-蛋白酶体通路、G-蛋白信号以及转录调控因子等多条途径,并通过控制细胞增殖和(或)扩张影响粒长、粒宽和千粒重[29-32](表1)。但是,整个调控网络还不完整,特别是各调控途径之间的相互联系,需要进一步深入研究,挖掘关键因子,不断完善。
目前,水稻基因组功能研究技术成熟。QTL精细定位后,候选基因的功能验证及分子机理研究水到渠成。因此,水稻重要农艺性状的QTL克隆很大程度取决于精细定位的准确性。QTL定位方法除传统的图位克隆外,也涌现出新的方法,如全基因组关联分析[54]和Ho-LAMap方法[37]。在已克隆的粒重和粒型QTL中,仍以图位克隆为主,在精细定位阶段大多采用回交方式构建NIL群体,回交次数最高的达到6次,群体大小至少在2000个样本以上,最多的达到20 160个样本(表1)。本文采用剩余杂合体构建SeqRHs-NIL群体策略,通过多轮定位逐步锁定目标基因(图2),它的优势在于:1)工作量降低。对于重组子,1个重组区域仅需筛选1个即可;对于分离群体,F2型群体约300个单株,NIL群体中双亲纯合型株系各不超过40个。2)容错率高。在分离群体中,相同基因型个体均包含大量样本,个别基因型和表型错误不影响QTL定位结果,有利于微效QTL的鉴定。3)连锁QTL鉴定效率高。在构建分离区间呈梯系排列的NIL群体时,易筛选到分离区间不交叠的重组单株,适宜连锁QTL的鉴定和分解。4)遗传背景一致性和QTL定位精度“自动”提高。在剩余杂合体筛选过程中,随世代推进,背景残存变异将“自动”逐步消除;剩余杂合体在加代过程中,目标分离区间自然重组,QTL作用区间精度“自动”提高。
表1 已克隆的水稻主效粒重和粒型QTL
遗传变异是水稻品种改良的基础,借助基因组编辑技术可针对目标基因进行定向改造,创建新的遗传变异,该技术在水稻品种定向改良方面显示出巨大潜力[55-58]。但从水稻产量性状QTL研究进展看,已克隆的基本为主效基因,在基因组中占比很低,严重限制了基因组编辑的育种应用。本小组建立的技术体系能准确精细定位微效QTL,并可借助CRISPR/Cas9敲除技术确定目标基因。同时,该技术途径还可在目标基因座位上创制新的等位变异,获得新的水稻种质资源[15]。希望通过对该技术途径的介绍,在方法上为水稻QTL图位克隆及新种质创制提供更多选择。
谢辞:感谢中国水稻研究所庄杰云研究员在微效粒重粒型QTL精细定位和图位克隆研究中做出的贡献以及对本文的指导。
[1] Ashikari M, Sakakibara H, Lin S, Yanamoto T, Takashi T, Nishimura A, Angeles R E, Qian Q, Kitano H, Matsuoka M.Cytokinin oxidase regulates rice grain production [J]., 2005, 309: 741-745.
[2] Huo X, Wu S, Zhu Z, Liu F, Fu Y, Cai H, Sun X, Gu P, Xie D, Tan L, Sun C.increases grain production in rice [J]., 2017, 8: 1497.
[3] Zhang Z, Wang K, Guo L, Zhu Y, Fan Y, Cheng S, Zhuang J.Pleiotropism of the photoperiod-insensitive allele ofon heading date, plant height and yield traits in rice [J]., 2012, 7: e52538.
[4] Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q.Natural variation inis an important regulator of heading date and yield potential in rice [J]., 2008, 40: 761-767.
[5] Wei X, Xu J, Guo H, Jiang L, Chen S, Yu C, Zhou Z, Hu P, Zhai H, Wan J.suppresses flowering in rice, influencing plant height and yield potential simultaneously [J]., 2010, 153: 1747-1758.
[6] Yan W H, Wang P, Chen H X, Zhou H J, Li Q P, Wang C R, Ding Z H, Zhang Y S, Yu S B, Xing Y Z, Zhang Q F.A major QTL,, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice [J]., 2011, 4: 319-330.
[7] Zhang Z H, Cao L Y, Chen J Y, Zhang Y X, Zhuang J Y, Cheng S H.Effects of Hd2 in the presence of the photoperiod-insensitive functional allele ofin rice [J]., 2016, 5: 1719-1726.
[8] Zhu Y, Fan Y, Wang K, Huang D, Liu W, Ying J, Zhuang J.Rice flowering locus T 1 plays an important role in heading date influencing yield traits in rice [J]., 2017, 7: 4918.
[9] Li N, Xu R, Li Y.Molecular networks of seed size control in plants [J]., 2019, 70: 11.
[10] Wang A, Hou Q, Si L, Huang X, Luo J, Lu D, Zhu J, Shangguan Y, Miao J, Xie Y, Wang Y, Zhao Q, Feng Q, Zhou C, Li Y, Fan D, Lu Y, Tian Q, Wang Z, Han B.The PLATZ transcription factor GL6 affect grain length and number in rice [J]., 2019, 180: 2077–2090.
[11] Ruan B, Shang L, Zhang B, Hu J, Wang Y, Lin H, Zhang A, Liu C, Peng Y, Zhu L, Ren D, Shen L, Dong G, Zhang G, Zeng D, Guo L, Qian Q, Gao Z.Natural variation in the promoter ofdetermines grain width and weight in rice [J]., 2020, 227(2): 3.
[12] Shi C L, Dong N Q, Guo T, Ye W W, Shan J X, Lin H X.A quantitative trait locuscontrols rice grain size and yield through the gibberellin pathway [J]., 2020, doi: 10.1111/tpj.14793.
[13] Li Q, Lu L, Liu H, Bai X, Zhou X, Wu B, Yuan M, Yang L, Xing Y.A minor QTL,, encoding an R2R3-MYB protein, negatively controls grain length in rice [J]., 2020, 133: 2387-2399. doi.org/10.1007/s00122-020-03606-z.
[14] Dong N Q, Sun Y, Guo T, Shi C L, Zhang Y M, Kan Y, Xiang Y H, Zhang H, Yang Y B, Li Y C, Zhao H Y, Yu H X, Lu Z Q, Wang Y, Ye W W, Shan J X, Lin H X.UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice [J]., 2020, doi.org/ 10.1038/s41467-020-16403-5.
[15] Chan A N, Wang L L, Zhu Y J, Fan Y Y, Zhuang J Y, Zhang Z H.Identification through fine mapping and verification using CRISRP/Cas9-targeted mutagenesis for a minor QTL controlling grain weight in rice[J].,2021,134: 327-337.https://doi.org/10.1007/s00122-020-03699-6.
[16] Noriko K, Masayuki K, Kei K, Takuya K, Tsutomu N, Yuji H, Itsuro T, Takashi S, Kiyoaki K.Identification of quantitative trait loci for rice grain quality and yield-related traits in two closely relatedL.subsp.cultivars grown near the northernmost limit for rice paddy cultivation[J]., 2017, 67: 191-206.
[17] Zhang H W, Fan Y Y, Zhu Y J, Chen J Y, Yu S B, Zhuang J Y.Dissection of theregion into two tightly-linked minor QTLs having stable effects for grain weight in rice[J]., 2016, 17: 98-107.
[18] Wang L L, Chen Y Y, Guo L, Zhang H W, Fan Y Y, Zhuang J Y.Dissection ofto three QTLs for grain weight and grain size in rice (L.)[J]., 2015, 202: 119-127.
[19] Dong Q, Zhang Z H, Wang LL, Zhu Y J, Fan Y Y, Mou T M, Ma L Y, Zhuang J Y.Dissection and fine-mapping of two QTL for grain size linked in a 460-kb region on chromosome 1 of rice[J]., 2018, 11: 44.
[20] Wang W, Wang L, Zhu Y, Fan Y, Zhuang J.Fine-mapping of, a quantitative trait locus for 1000-grain weight in rice[J]., 2019, 26(4): 220-228.
[21] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity [J]., 2012, 337: 816.
[22] Hu X, Meng X, Liu Q, Wang K.Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice [J]., 2018, 16: 292-297.
[23] Meng X, Hu X, Liu Q, Song X, Gao C, Li J, Wang K.Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice [J]., 2018, 61: 122-125.
[24] Shan Q, Wang Y, Li J, Gao C.Genome editing in rice and wheat using the CRISPR/Cas system [J]., 2014, 9: 2395-2410.
[25] Zhao D S, Li Q F, Zhang C Q, Zhang C, Yang Q Q, Pan L X, Ren X Y, Lu J, Gu M H, Liu Q Q.acts as a transcriptional activator to regulate rice grain shape and appearance quality [J]., 2018, 9: 1240.
[26] Ying J Z, Ma M, Bai C, Huang X H, Liu J L, Fan Y Y, Song X J., a major QTL that negatively modulates grain length and weight in rice [J]., 2018, 11: 750-753.
[27] Zhuang J Y, Fan Y Y, Rao Z M, Wu J L, Xia Y W, Zheng K L.Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice [J]., 2002, 105: 1137-1145.
[28] Guo L, Wang K, Chen J, Huang D, Fan Y, Zhuang J Y.Dissection of two quantitative trait loci for grain weight linked in repulsion on the long arm of chromosome 1 of rice (L.) [J]., 2013, 1: 70-76.
[29] Li N, Xu R, Duan P, Li Y H.Control of grain size in rice., 2018, 31: 237-251.DOI: 10.1007/ s00497-018-0333-6.
[30] 刘喜, 牟昌铃, 周春雷, 程治军, 江玲, 万建民.水稻粒型基因克隆和调控机制研究进展[J].中国水稻科学, 2018, 32(1): 1-11.
Liu X, Mou C, Zhou C, Cheng Z, Jiang L, Wang J.Research progress on cloning and regulation mechanism of rice grain shapes genes [J]., 2018, 32(1): 1-11.(in Chinese with English abstract).
[31] Fan Y, Li Y.Molecular, cellular and Yin-Yang regulation of grain size and number in rice [J]., 2019, 39: 163.
[32] 康艺维, 陈玉宇, 张迎信.水稻粒型基因克隆研究进展及育种应用展望[J].中国水稻科学, 2020, 34(6): 479-490.
Kang Y W, Chen Y Y, Zhang Y X.Research progress and breeding prospects of grain size associated genes in rice [J]., 2020, 34(6): 479-490.(in Chinese with English abstract).
[33] Song X J, Huang W, Shi M, Zhu M Z, Lin H X.A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase [J]., 2007, 39: 623-630.
[34] Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S, Zhu L, Dong G, Guo L, Zeng D, Zhang G, Xie L, Xiong G, Li J, Qian Q.A rare allele ofenhances grain size and grain yield in rice[J]., 2015, 8: 1455-1465.
[35] Duan P, Ni S, Wang J, Zhang B, Xu R, Wang Y, Chen H, Zhu X, Li Y.Regulation ofby OsmiR396 controls grain size and yield in rice [J]., 2016, 2: 15203.
[36] Che R, Tong H, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H, Zhao M, Chu C.Control of grain size and rice yield by GL2-mediated brassinosteroid responses [J]., 2016, 2.
[37] Yu J, Xiong H, Zhu X, Zhang H, Li H, Miao J, Wang W, Tang Z, Zhang Z, Yao G, Zhang Q, Pan Y, Wang X, Rashid MAR, Li J, Gao Y, Li Z, Yang W, Fu X, Li Z.contributing to rice grain length and yield was mined by Ho-LAMap [J]., 2017, 15: 28-45.
[38] Yu J, Miao J, Zhang Z, Xiong H, Zhu X, Sun X, Pan Y, Liang Y, Zhang Q, Rashid MAR, Li J, Zhang H, Li Z.Alternative splicing ofcontrols grain length and yield in japonica rice [J]., 2018, doi:10.1111/pbi.12903.
[39] Liu Q, Han R, Wu K, Zhang J, Ye Y, Wang S, Chen J, Pan Y, Li Q, Xu X, Zhou J, Tao D, Wu Y, Fu X.G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice [J]., 2018, 9: 852.
[40] Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q., a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein [J]., 2006, 112: 1164-1171.
[41] Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L, Gao J P, Lin H X.The novel quantitative trait locuscontrols rice grain size and yield by regulating Cyclin-T1;3[J]., 2012, 22: 1666-1680.
[42] Zhang X, Wang J, Huang J, Lan H, Wang C, Yin C, Wu Y, Tang H, Qian Q, Li J, Zhang H.Rare allele ofassociated with grain length causes extra-large grain and a significant yield increase in rice [J]., 2012, 26, 109: 21 534-21 539.
[43] Hu Z, Lu S J, Wang M J, He H, Sun L, Wang H, Liu X H, Jiang L, Sun J L, Xin X, Kong W, Chu C, Xue H W, Yang J, Luo X, Liu J X.A novel QTLencodes the GSK3/SHAGGY-Like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice [J]., 2018, 11: 736-749.
[44] Xia D, Zhou H, Liu R, Dan W, Li P, Wu B, Chen J, Wang L, Gao G, Zhang Q, He Y., a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to form extra-long grains in rice [J]., 2018, 11: 754-756.
[45] Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q.Natural variation inplays an important role in regulating grain size and yield in rice [J]., 2011, 43: 1266-1269.
[46] Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M.Deletion in a gene associated with grain size increased yields during rice domestication [J]., 2008, 40(8): 1023-1028.
[47] Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J, Jiang L, Zhai H, Wan J.Isolation and initial characterization of, a major QTL associated with grain width and weight [J]., 2008, 18: 1199-1209.
[48] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu Bun-ichi, Onishi A, Miyagawa H, Katoh E.Loss of function of the IAA-glucose hydrolase geneenhances rice grain weight and increases yield [J]., 2013, 45: 707-711.
[49] Song X J, Kuroha T, Ayano M, Furuta T, Nagai K, Komeda N, Segami S, Miura K, Ogawa D, Kamura T, Suzuki T, Higashiyama T, Yamasaki M, Mori H, Inukai Y, Wu J, Kitano H, Sakakibara H, Jacobsen S E, Ashikari M.Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice [J]., 2015, 112: 76-81.
[50] Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shangguan Y, Chen E, Gong C, Zhao Q, Jing Y, Zhao Y, Li Y, Cui L, Fan D, Lu Y, Weng Q, Wang Y, Zhan Q, Liu K, Wei X, An K, An G, Han B.controls grain size in cultivated rice [J]., 2016, 48: 447-456.
[51] Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Xu J, Ye W, Meng X, Liu R, Chen H, Jing Y, Wang Y, Zhu X, Li J, Qian Q.Copy number variation at thelocus contributes to grain size diversity in rice [J]., 2015, 47: 944-948.
[52] Wang S, Li S, Liu Q, Wu K, Zhang J, Wang S, Wang Y, Chen X, Zhang Y, Gao C, Wang F, Huang H, Fu X.The-regulatory module determines grain shape and simultaneously improves rice yield and grain quality [J]., 2015, 47: 949-954.
[53] Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X.Control of grain size, shape and quality byin rice [J]., 2012, 44: 950-954.
[54] Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler S E, Qian Q, Zhang Q-F, Li J, Han B.Genome-wide association studies of 14 agronomic traits in rice landraces [J]., 2010, 42(11): 961-969.
[55] Huang L, Zhang R, Huang G, Li Y, Melaku G, Zhang S, Chen H, Zhao Y, Zhang J, Zhang Y, Hu F.Developing superior alleles of yield genes in rice by artificial mutagenesis using the CRISPR/Cas9 system [J]., 2018, 6: 475-481.
[56] Wang C, Liu Q, Shen Y, Hua Y, Wang J, Lin J, Wu M, Sun T, Cheng Z, Mercier R, Wang K.Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes [J]., 2019, doi.org/10.1038/s41587-018-0003-0.
[57] Li S, Shen L, Hu P, Liu Q, Zhu X, Qian Q, Wang K, Wang Y.Developing disease-resistant thermosensitive male sterile rice by multiplex gene editing[J]., 2019, doi: 10.1111/jipb.12774.
[58] 黄忠明, 周延彪, 唐晓丹, 赵新辉, 周在为, 符星学, 王凯, 史江伟, 李艳锋, 符辰建, 杨远柱.基于CRISPR/Cas9技术的水稻温敏不育基因突变体的构建[J].作物学报, 2018, 44(6): 844-851.
Huang Z M, Zhou Y B, Tang X D, Zhao X H, Zhou Z W, Fu X X, Wang K, Shi J W, Li Y F, Fu C J, Yang Y Z.Construction ofmutants in rice based on CRISPR/Cas9 technology [J]., 2018, 44(6): 844-851.(in Chinese with English abstract).
A New Approach for Fine-mapping and Map-based Cloning of Minor-Effect QTL in Rice
ZHU Yujun*, ZUO Ziwei, ZHANG Zhenhua, FAN Yeyang
(State Key Laboratory of Rice Biology / Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China;*Corresponding author, E-mail: zhuyujun@caas.cn)
Important agronomic traits in rice are generally controlled by a few major-effect QTLs and a large number of minor-effect QTLs.Great progresses have been made in the cloning of major QTLs, while minor QTLs remain difficult to be cloned due to their small genetic effects and the influence of measurement error.A new approach for fine-mapping and map-based cloning of rice minor-effect QTL was introduced in this article.The approach includes two steps: 1) Use the residual heterozygote to construct near isogenic lines for fine-mapping of the target QTL; 2) Use the genome editing to create mutants of candidate genes for gene function identification.Using the strategy, we fine-mapped six minor QTLs for grain weight and grain size on the long arm of chromosome 1, and successfully cloned the first minor QTL for grain weight.We expect that this approach could provide more options for QTL cloning and new germplasm creation.
rice (L.); grain size; minor QTL; map-based cloning
10.16819/j.1001-7216.2021.201206
2020-12-09;
2021-01-24。
浙江省“万人计划”杰出人才基金资助项目(2020R51007);中央级公益性科研院所基本科研业务费专项(CPSIBRF-CNRRI-202112);水稻生物学国家重点实验室课题(2020ZZKT10105)。