思易错之源 悟纠错之道

2021-05-14 13:11施长燕
初中生世界·九年级 2021年3期
关键词:平方根错因分式

施长燕

“数与式”是初中数学的核心内容之一,它融合在诸多的知识之中。“数与式”既是重点知识,也是同学们易错的内容。为了让同学们能更好地规避错误,掌握所学,下面将“数与式”中的易错点进行整理,并结合易错题型让大家思考易错的源头,感悟纠错之道。

一、概念本质要心中有数

易错点1:无理数的概念理解不到位。

例1 (2020·四川遂宁)下列各数3.1415926,[9],1.212212221…,[17],2-π,

-2020,[43]中,无理数的个数是。

【错解】在所列实数中,无理数有[9],1.212212221…,2-π,[43]这4个。

故答案为4。

【错因分析】本题考查的是无理数的概念,错误的主要原因是没有真正理解无理数的概念,只看形式,而没有化简后再判断。无理数的常见类型有:①根号型,如[3]、[5]等开方开不尽的数;②定义型,如1.010010001…(相邻两个1之间依次多一个0)等;③含“π”型,如π+2等。而且在判断之前要先化简,再结合无理数的常见类型去判断。

【正解】∵[9]=3,

∴3.1415926、[9]、[17]和-2020都是有理数。

∵[43]属于根号型,2-π属于含“π”型,1.212212221…属于定义型,∴这三个都是无理数。故答案为3。

易错点2:相反数、倒数的概念易混淆。

例2 (2020·江苏无锡)-7的倒数是()。

A.[17]B.7C.[-17]D.-7

【错解】B。

【错因分析】本题考查的是倒数的概念,乘积为1的两个数互为倒数。但有些同学对倒数的概念把握不到位,易把倒数与相反数的概念混淆。绝对值相等、符号相反的两个数互为相反数。有的同学误认为-7的倒数是7,而非根据倒数的概念,用1去除以这个数来得到这个数的倒数。

【正解】根据倒数的定义,-7的倒数是[-17]。故选C。

易错点3:平方根与算术平方根的区别。

例3 (2020·江苏南京)3的平方根是()。

A.9B.[3] C.[-3] D.[±3]

【错解】B。

【错因分析】本题考查的是平方根,但有同学往往会错选这个数的算术平方根。正数a的平方根为[±a],是正负两个值,而其中正值[a]是這个正数的算术平方根。

【正解】∵([±3])2=3,∴3的平方根是[±3]。故选D。

二、解决问题要挖掘条件

易错点4:实数的大小比较。

例4 (2020·山东临沂)下列温度比-2℃低的是。

A.-3℃ B.-1℃ C.1℃ D.3℃

【错解】B。

【错因分析】本题考查的是实数的大小比较,做错的原因往往是没有抓住两个实数如何比较大小的本质。任意两个实数比较大小要遵循:(1)在数轴上表示的两点,右边的点表示的数比左边的点表示的数大;(2)正数大于0,负数小于0,正数大于负数;(3)两个正数中,绝对值大的数大;(4)两个负数中,绝对值大的反而小。

【正解】根据两个负数,绝对值大的反而小可知。故选A。

易错点5:代数式有意义。

例5 (2020·湖南常德)若代数式[22x-6]在实数范围内有意义,则x的取值范围是。

【错解】由2x-6≥0,可得x≥3。

【错因分析】本题考查的是二次根式和分式有意义的条件,关键是要掌握:(1)分式分母不为0;(2)被开方数是非负数。而在解决本题的过程中,有的同学只考虑了被开方数是非负数,而忽略了分母不为0。本题的被开方数还在分母上,因考虑不周全而导致求取值范围时出错。

【正解】根据题意,得[2x-6≥0,2x-6≠0,]

解得[x≥3,x≠3,]

∴x的取值范围是x>3。

故答案为x>3。

易错点6:分式的值为0时,易忽视分母不能为0。

例6 (2019·山东聊城) 如果分式[x-1x+1]的值为0,那么x的值为()。

A.-1B.1C.-1或1 D.1或0

【错解】由[x]-1=0, 解得x=±1。故选C。

【错因分析】本题考查的是分式的值为0。分式的值为0的条件应是满足分子为0且分母不为0。本题之所以解错,是因为只考虑到分子为0,即[x-]1=0,而忽视了分式有意义的条件:分母不为0,即x+1≠0。

【正解】根据题意,得[x-1=0,x+1≠0,]

解得[x=±1,x≠-1,]

∴x=1。故选B。

三、综合运算要步步为营

易错点7:运算时要把好符号关。

例7 (2020·江苏徐州)计算:(-1)2020

+[2-2]-([12])-1。

【错解】原式=-1+[2]-2-2

=[2]-5。

【错因分析】本题考查的是实数的运算,要正确进行实数的运算,就要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关。如遇到去绝对值问题,就要思考绝对值里的是正数还是负数。正数的绝对值等于它本身,负数的绝对值等于它的相反数。本题出错是因为去绝对值时,未处理好符号问题,同时求(-1)2020时,符号也出现问题,导致出现计算错误。

【正解】原式=1-([2-2])-2

=1-[2]+2-2

=1-[2]。

易错点8:分式运算要综合考虑。

例8 (2020·山东德州)先化简:([x-1x-2]-[x+2x])÷[4-xx2-4x+4],然后选择一个合适的x值代入求值。

【错解】原式=[[x(x-1)x(x-2)-(x+2)(x-2)x(x-2)]]

÷[4-x(x-2)2]

=[x2-x-x2+4x(x-2)]?[(x-2)24-x]

=[4-xx(x-2)]?[(x-2)24-x]

=[x-2x]。

当x=4时,原式=[12]。

【错因分析】本题考查的是分式的运算。进行分式的运算时,要综合考虑:①运算法则和符号的变化;②分子或分母是多项式时,要分解因式且要分解到不能分解为止;③结果应化为最简分式。本题出错的原因是在取值时没有考虑“分母不为0”,即x≠0和x-2≠0,同时忽视了除数不能为0的条件,即4-x≠0。故x≠0,x≠2,x≠4。

【正解】原式=[[x(x-1)x(x-2)-(x+2)(x-2)x(x-2)]]

÷[4-x(x-2)2]

=[x2-x-x2+4x(x-2)]?[(x-2)24-x]

=[4-xx(x-2)]?[(x-2)24-x]

=[x-2x]。

由分式有意义知x≠0,x≠2,x≠4,

当x=3时,原式=[13]。

总之,同学们想要在“数与式”的应用中减少错误,就必须注重基础知识的理解和基本技能的掌握,真正做到心中有“数”。

(作者单位:江苏省常熟市滨江实验中学)

猜你喜欢
平方根错因分式
例谈一类分式不等式问题的解法
“平方根”检测题
反思错因正确解答
平方根与算术平方根的区别与联系
理清错因,让“幂”运算强起来
一元一次方程解法中的错因分析及解决
“平方根”检测题
浅谈平方根、算术平方根的几点异同
学习分式的五个禁忌
八年级数学(下册)期中检测题(A)