于金璐 韩明月 陈佳琳 王强
【摘要】 血小板反应蛋白(thrombospondin,TSP)作为一种基质细胞蛋白,分为A和B亚群。它们可与多种配体相互作用,调节各种生理和病理过程。TSP在眼睛很多部位中表达,可参与免疫调节、抗血管和淋巴管生成、伤口愈合以及神经元突触形成等。越来越多的研究证明了TSP各种亚型的缺乏将会导致眼部稳态破坏和眼部疾病发生。本文主要回顾了TSP各亚型的特性、功能以及其在青光眼、糖尿病视网膜病变、干眼、眼部过敏、角膜移植和感染性角膜炎等疾病中发挥的作用。
【关键词】 血小板反应蛋白 眼科疾病 生理 病理
Latest Research Progress of Platelet Reactive Protein in Ophthalmological Related Diseases/YU Jinlu, HAN Mingyue, CHEN Jialin, WANG Qiang. //Medical Innovation of China, 2021, 18(28): -183
[Abstract] As a kind of stromal cell protein, the thrombospondin (TSP) can be divided into A and B inferior populations. They can interact with a variety of ligands to regulate a variety of physiological and pathological processes. TSP is expressed in many parts of the eye and is involved in immune regulation, anti-angiogenesis and Anti-lymphangiogenesis, wound healing, and neuronal synapse formation. More and more studies have demonstrated that the lack of various subtypes of TSP will lead to impaired ocular homeostasis and ophthalmological disease. In this article, we review the characteristics and functions of each subtype of TSP and its role in glaucoma, diabetic retinopathy, dry eyes, ocular allergies, corneal transplantation, and infectious keratitis.
[Key words] Thrombospondin Ophthalmological disease Physiology Pathology
First-author’s address: Affiliated Hospital of Binzhou Medical University, Binzhou 256603, China
doi:10.3969/j.issn.1674-4985.2021.28.044
细胞外基质(ECM)是复杂的蛋白质三维网络,在细胞的信号转导,分化,增殖,极性,迁移和存活中起着至关重要的作用[1]。血小板反应蛋白是细胞外基质蛋白家族,由五个成员(TSP-1至TSP-5)组成,它们与各种细胞表面受体和蛋白酶相互作用,从而影响伤口愈合和血管生成、突触生成和炎症等多种体内现象[2]。本文将阐明TSP对眼睛稳态和疾病作用所取得进展。描述了TSP在眼的表达和功能,并探讨了TSP在各种眼科疾病中的作用。现就TSP与正常及患病眼睛之间联系进行综述。
1 血小板反应蛋白结构及生物学特性
血小板反应蛋白家族分为A亚群和B亚群,A亚群的成员TSP-1和TSP-2是同三聚体分子,具有凝血酶反应蛋白1型重复序列(TSR)。B亚群其成员是同五聚体,包括血小板反应蛋白3-5(TSP3-5),亚基质量均较小。目前对TSP-1研究较多,本文将着重介绍。所有TSP均包括两个末端的N末端,被结合形成2型(EGF-like)重复序列、3型钙结合重复序列和球状C末端结构域,以此來实现细胞附着的功能[3]。如图1所示:TSP都包括N末端、C末端结构域和重复序列。血小板反应蛋白分为A亚群(三聚体)和B亚群(五聚体)。A亚群存在三个I型重复序列(3TSR),可与受体CD36和潜在TGF-b结合。羧基末端结合CD47受体,而b1整联蛋白结合位点通过Ⅰ型和Ⅱ型重复序列和N端结构域分布。TSP-1还可以结合其他细胞外基质配体,如肝素、MMP来发挥各种功能。
Bein等[4]通过实验证明了TSP-1和TSP-2能通过TSR与基质金属蛋白酶2(MMP2)结合,且MMP2的活性可被完整的TSP-1抑制。Rodriguez-Manzaneque等[5]研究发现基质金属蛋白酶3对基质金属蛋白酶9的激活被TSP-1抑制。表明其具有调节关键蛋白酶的特性。TSP-1信号通过整合素蛋白(CD47)通过羧基末端发生[6]。正是通过这些相互作用,TSP-1介导了其各种免疫调节,抗血管生成和伤口愈合等功能。
2 血小板反应蛋白在眼组织中的分布
TSP1在正常成年哺乳动物眼睛的角膜、小梁网、晶状体上皮、虹膜、视网膜血管、玻璃体等表达,且该蛋白在视网膜色素上皮(RPE)中产生[7]。RPE细胞还可产生TSP2-4[8]。Sekiyama等[9]证明TSP-1在角膜和角膜缘上皮中表达,且高水平的TSP-1只出现在角膜上皮以下,推测这独特的分布与角膜血管的丰富和完整性有关。TSP-2主要存在于人角膜内皮、小梁网、葡萄膜网状结构和晶状体上皮中,TSP-3位于角膜、巩膜等部位,TSP-4大部分地位于角膜、小梁网、巩膜、视网膜上[7]。
3 血小板反应蛋白功能
3.1 免疫调节 TSP-1是体内转化生长因子-β1(TGF-β1)的主要激活剂[10]。TSP-1在Th17和Treg细胞的发育过程中都是至关重要的,TSP-1对眼组织中Treg的诱导也是必不可少的[11]。而Treg是免疫稳态的关键调节剂,通过调节细胞因子和调节树突状细胞功能来抑制效应T细胞[12]。
3.2 抗血管及抗淋巴管生成 TSP-1通过多种途径抑制新生血管的生长,包括拮抗VEGF,诱导血管内皮细胞凋亡,调节内皮细胞的增殖和迁移[13]。与野生型(WT)小鼠相比,TSP-1缺陷小鼠的角膜自发淋巴管生成显著增加,并可通过重组人TSP-1局部治疗所消除[14]。这证实了TSP-1具有抗淋巴管生成的重要作用。最近的研究发现TSP-1的表达可被白藜芦醇增加1.5倍以增强抗血管生成因子[15]。Tian等[16]实验证明VR-10合成肽作为TSP1合成多肽,通过上调抗血管生成因子PEDF和下调VEGF2,抑制内皮细胞增殖和迁移,增加促凋亡基因Fas/FasL,降低了生存基因Bcl-2来参与抗血管生成作用。通过以上不同的机制,TSP-1发挥了血管生成抑制剂的作用。TSP-2也可抑制角膜新生血管形成,实现其抗血管生成作用[17]。最近发现TSP4缺乏的小鼠可导致促血管生成活性减弱,体外实验中添加重组TSP-4可增加促血管生成特性[18]。
3.3 伤口愈合 TSP-1通过上调TGF-β1活性,在伤口愈合中起关键作用[10]。与WT对照小鼠相比,TSP-1基因缺失小鼠创伤后创口表现出愈合延迟,并伴有持续性炎症和晚期结痂脱落[19]。Uno等[20]的实验中,外源性TSP-1表现了刺激角膜创面再上皮化的功能[20]。Uno等[21]又发现了维生素A缺乏的小鼠角膜上皮清创后无法表达TSP-1,其再上皮化明显延迟,作者认为TSP-1的表达可能有助于促进角膜上皮清创术后上皮的迁移和黏附。
3.4 神经元突触形成 Bhattacharya等[22]发现TSP-1基因缺失的小鼠泪腺中含有降钙素基因相关肽神经减少,证实了TSP-1基因缺失可导致周围神经的损伤进而影响腺体功能。Thematsu等[23]研究发现与年龄匹配WT小鼠相比,老年TSP-1缺失小鼠的角膜感觉神经纤维较少且不连续。提示了TSP-1在神经纤维的结构和功能中的重要作用。Falero-Perez等[24]实验研究还证明缺乏Bim表达的星形胶质细胞表现出TSP-2表达增加,TSP-1表达显著降低。研究者认为TSP2的表达上调可能是一种稳定神经元突触的代偿性改变。另一个研究表明,纯化的TSP-4可增强层粘连蛋白支持黏附和轴突生长的能力[25]。
3.5 抑制肿瘤生长 肿瘤细胞衍生的TSP1和TSP2可能抑制肿瘤生长转移必需的肿瘤脉管系统,因此具有抗肿瘤作用[26]。在卵巢癌、胶质母细胞瘤的临床前模型中,重组TSP-1 3型重复结构域(称为3TSR)与CD36的直接相互作用抑制卵巢癌细胞和胶质母细胞的生长,被证明是有效的肿瘤生长抑制剂而提高生存率[27-28]。
3.6 抗炎 与正常结膜中TSP-1表达不变CD36表达明显降低相比,TSP-1缺陷性结膜中CD36(有抗炎作用)表达增加,提示了TSP-1缺失可能导致结膜炎[29]。Contreras等[30]研究了TSP-1衍生肽能通过促进Treg的诱导和抑制Th17淋巴细胞的发育来逆转TSP-1缺陷小鼠的眼表炎症症状。另一个TSP-1衍生肽,Lys-Arg-Phe-Lys(KRFK),能结合Leu-Ser-Lys-Leu(Lskl)序列(维持TGF-β处于失活或潜伏状态所必需的一个序列)[31]。因此,KRFK有望在不依赖于TSP受体(如CD47和CD36)下,激活TGF-β介导的信号转导[31]。Soriano-Romani等[32]也通过体外实验证明KRFK可激活TGF-β,减少树突状细胞上共刺激分子表达,在慢性眼表炎症发展方面有明显疗效。
4 血小板反应蛋白家族在眼科相关疾病的研究进展
4.1 青光眼 眼内压(IOP)过高是青光眼失明的主要原因,ECM的异常重塑增加了对小梁网(TM)房水流出的阻力从而导致眼压升高,是青光眼的主要风险因素[33]。青光眼房水中TSP-1和TGF-β2的水平升高,TGF-β2刺激视神经头(ONH)星形胶质细胞和筛板(LC)细胞的ECM蛋白表达,造成了小梁网和ONH的病理重塑[34]。与白内障组对比,新生血管性青光眼中TSP-1明显上调[35]。因此,TSP-1肽拮抗剂LSKL抑制TSP1-TGFb的激活,有望在青光眼治疗中发挥作用[36]。另一研究发现与白内障组相比,急性原发性闭角型青光眼组中TSP-2的水平明显升高,并且与IOP呈正相关[37]。
4.2 糖尿病视网膜病变 增生性糖尿病视网膜病变(PDR)患者玻璃体中TSP-1浓度比对照组高10倍,研究者将其归因于响应促血管生成因子来上调TSP-1,抵消和平衡PDR中的血管生成转换[38]。与上述结果不同,Sorenson等[39]发现糖尿病患者眼睛中TSP-1的产生显著减少,且TSP1基因缺失的秋田雄性小鼠表现出更晚期的糖尿病视网膜病变。这些差异是否由于技术因素或者物种因素造成的,还需要更多的研究来证明。另一个研究发现TSP-2基因缺乏的小鼠出生后早期视网膜脉管系统发育更快,TSP-2能否作為眼部血管形成抑制剂仍有待进一步证实[40]。
4.3 干眼(DED) Shatos等[41]通过构建干燥综合征的小鼠模型证实了TSP-1缺失会改变细胞因子水平和泪腺细胞结构。TSP-1缺失小鼠泪腺肌上皮细胞调节能力减弱,从而导致其易患DED[42]。且暴露在干燥环境中会增加角膜上皮细胞TSP-1的表达[43]。Tan等[43]发现DED小鼠角膜上皮细胞较WT小鼠具有更强的抑制树突状细胞能力,这种作用可被TSP-1阻断,且可被重组TSP-1滴眼液增强,这进一步证明了TSP-1在干眼病中的作用。
4.4 眼部过敏 Smith等[44]已经证明,树突状细胞通过向TSP-1无效宿主的眼黏膜局部转移,阻止了继发性T细胞增强的细胞反应,证实了树突状细胞衍生的TSP-1在眼部过敏的作用。因此TSP-1衍生肽4N1K滴眼液可降低过敏性眼病的严重程度[30]。Sarfati等[45]也证实了TSP-1介导的CD47的树突状细胞和T细胞功能负面调节机体免疫功能的重要性。
4.5 葡萄膜黑色素瘤 葡萄膜黑色素瘤是最常见的原发性眼内恶性肿瘤,Hiscott等[7]在脉络膜黑色素瘤细胞中没有检测到TSP-1和TSP-2的表达。在葡萄膜黑色素瘤小鼠中检测到TSP-1的表达减少,眼内过表达TSP-1或给予TSP-1模拟肽可抑制小鼠的肿瘤生长[46]。肿瘤发生的机制一种被认为是肿瘤抑制基因THY1的丢失,而THY1是TSP1合成所必需的[47]。另一种可能性是上调的环氧合酶(COX-2)可促进肿瘤血管生成,并与葡萄膜黑色素瘤不良预后的标志物有关,可能会降低TSP-1的表达[48]。
4.6 黃斑变性 年龄相关性黄斑变性(AMD)是导致老年人视力丧失的主要原因,发病机制主要与视网膜色素上皮(RPE)功能障碍和脉络膜新生血管(CNV)形成有关[49]。AMD发生的重要危险因素是受损RPE部位聚集了巨噬细胞和小胶质细胞,其清除率受TSP-1及其受体CD47相互作用的影响[50]。通过研究TSP-1缺陷型小鼠的RPE发现,TSP-1表达显著影响RPE细胞的增殖、迁移,可造成ECM组成改变,进而导致眼部新生血管形成导致AMD[49]。TSP-1或与其他现有治疗剂组合可能AMD是未来一种很有前景的治疗方法[50]。
4.7 角膜移植 与WT小鼠相比,TSP-1缺失小鼠异体角膜移植排斥率明显更高,从侧面证明了TSP-1是移植存活的重要因素[51]。研究证明,角膜移植可以诱导淋巴管生成,抑制淋巴管生成会延长移植物存活时间[52]。TSP-1缺失的同种异体移植显著增强了直接同种异体致敏作用,并显著增加了免疫排斥反应水平。因此,上调TSP-1表达在促进移植存活方面是有前景的。
5 展望
目前有大量研究证明TSP对正常眼部的保护具有非常重要的意义,例如,在TSP-1基因缺失的小鼠中,可发现自发性干眼病、角膜血管生成的增加和伤口愈合的延迟,且此种类型小鼠发生角膜移植排斥反应的风险增加[11,14,30,51]。尽管对TSP的功能有了比较多的了解,但在正常和疾病状态下仍有许多TSP依赖性的眼部机制尚待揭示,TSP衍生肽在治疗眼部疾病上有很可观的前景。
参考文献
[1] Hynes R O.The extracellular matrix:not just pretty fibrils[J].Science,2009,326(5957):1216-1219.
[2] Adams J C,Lawler J.The thrombospondins[J].Cold Spring Harbor Perspectives in Biology,2011,3(10):a009712.
[3] Masli S,Sheibani N,Cursiefen C,et al.Matricellular protein thrombospondins:influence on ocular angiogenesis,wound healing and immuneregulation[J].Curr Eye Res,2014,39(8):759-774.
[4] Bein K,Simons M.Thrombospondin type 1 repeats interact with matrix metalloproteinase 2.Regulation of metalloproteinase activity[J].J Biol Chem,2000,275(41):32167-32173.
[5] Rodriguez-Manzaneque J C,Lane T F,Ortega M A,et al.
Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor[J].Proc Natl Acad Sci USA,2001,98(22):12485-12490.
[6] Floquet N,Dedieu S,Martiny L,et al.Human thrombospondin’s(TSP-1)C-terminal domain opens to interact with the CD-47 receptor:a molecular modeling study[J].Arch Biochem Biophys,2008,478(1):103-109.
[7] Hiscott P,Paraoan L,Choudhary A,et al.Thrombospondin 1,thrombospondin 2 and the eye[J].Prog Retin Eye Res,2006,25(1):1-18.
[8] Carron J A,Hiscott P,Hagan S,et al.Cultured human retinal pigment epithelial cells differentially express thrombospondin-1,-2,-3,and-4[J].Int J Biochem Cell Biol,2000,32(11-12):1137-1142.
[9] Sekiyama E,Nakamura T,Cooper L J,et al.Unique distribution of thrombospondin-1 in human ocular surface epithelium[J].Invest Ophthalmol Vis Sci,2006,47(4):1352-1358.
[10] Penn J W,Grobbelaar A O,Rolfe K J.The role of the TGF-βfamily in wound healing,burns and scarring:a review[J].Int J Burns Trauma,2012,2(1):18-28.
[11] Turpie B,Yoshimura T,Gulati A,et al.Sjogren’s syndrome-like ocular surface disease in thrombospondin-1 deficient mice[J].Am J Pathol,2009,175(3):1136-1147.
[12] Foulsham W,Marmalidou A,Amouzegar A,et al.Review:The function of regulatory T cells at the ocular surface[J].Ocul Surf,2017,15(4):652-659.
[13] Lawler P R,Lawler J.Molecular basis for the regulation of angiogenesis by thrombospondin-1 and-2[J].Cold Spring Harb Perspect Med,2012,2(5):a006627.
[14] Cursiefen C,Maruyama K,Bock F,et al.Thrombospondin 1 inhibits inflammatory lymphangiogenesis by CD36 ligation on monocytes[J].J Exp Med,2011,208(5):1083-1092.
[15] Ishida T,Yoshida T,Shinohara K,et al.Potential role of sirtuin 1 in Müller glial cells in mice choroidal neovascularization[J/OL].PLoS One,2017,12(9):e0183775.
[16] Tian R,Han F,Yang J,et al.VR-10 Thrombospondin-1 Synthetic Polypeptide’s Impact on Rhesus Choroid-Retinal Endothelial Cells[J].Cell Physiol Biochem,2018,46(2):609-617.
[17] Volpert O V,Tolsma S S,Pellerin S,et al.Inhibition of angiogenesis by thrombospondin-2[J].Biochem Biophys Res Commun,1995,217(1):326-332.
[18] Muppala S,Frolova E,Xiao R,et al.Proangiogenic Properties of Thrombospondin-4[J].Arterioscler Thromb Vasc Biol,2015,35(9):1975-1986.
[19] Agah A,Kyriakides T R,Lawler J,et al.The lack of thrombospondin-1(TSP1)dictates the course of wound healing in double-TSP1/TSP2-null mice[J].Am J Pathol,2002,161(3):831-839.
[20] Uno K,Hayashi H,Kuroki M,et al.Thrombospondin-1 accelerates wound healing of corneal epithelia[J].Biochem Biophys Res Commun,2004,315(4):928-934.
[21] Uno K,Kuroki M,Hayashi H,et al.Impairment of thrombospondin-1 expression during epithelial wound healing in corneas of vitamin A-deficient mice[J].Histol Histopathol,2005,20(2):493-499.
[22] Bhattacharya S,García-Posadas L,Hodges R R,et al.
Alteration in nerves and neurotransmitter stimulation of lacrimal gland secretion in the TSP-1(-/-)mouse model of aqueous deficiency dry eye[J].Mucosal Immunol,2018,11(4):1138-1148.
[23] Tatematsu Y,Khan Q,Blanco T,et al.Thrombospondin-1 Is Necessary for the Development and Repair of Corneal Nerves[J].Int J Mol Sci,2018,19(10):3191.
[24] Falero-Perez J,Sheibani N,Sorenson C M.Bim expression modulates the pro-inflammatory phenotype of retinal astroglial cells[J/OL].PLoS One,2020,15(5):e0232779.
[25] Dunkle E T,Zaucke F,Clegg D O.Thrombospondin-4 and matrix three-dimensionality in axon outgrowth and adhesion in the developing retina[J].Exp Eye Res,2007,84(4):707-717.
[26] Lawler J,Detmar M.Tumor progression:the effects of thrombospondin-1 and-2[J].Int J Biochem Cell Biol,2004,36(6):1038-1045.
[27] Russell S,Duquette M,Liu J,et al.Combined therapy with thrombospondin-1 type I repeats(3TSR)and chemotherapy induces regression and significantly improves survival in a preclinical model of advanced stage epithelial ovarian cancer[J].FASEB J,2015,29(2):576-588.
[28] Choi S H,Tamura K,Khajuria R K,et al.Antiangiogenic variant of TSP-1 targets tumor cells in glioblastomas[J].Mol Ther,2015,23(2):235-243.
[29] Soriano-Romaní L,Contreras-Ruiz L,García-Posadas L,
et al.Inflammatory Cytokine-Mediated Regulation of Thrombospondin-1 and CD36 in Conjunctival Cells[J].J Ocul Pharmacol Ther,2015,31(7):419-428.
[30] Contreras Ruiz L,Mir F A,Turpie B,et al.Thrombospondin-derived peptide attenuates Sjogren’s syndrome-associated ocular surface inflammation in mice[J].Clin Exp Immunol,2017,188(1):86-95.
[31] Sweetwyne M T,Murphy-Ullrich J E.Thrombospondin1 in tissue repair and fibrosis:TGF-β-dependent and independent mechanisms[J].Matrix Biol,2012,31(3):178-186.
[32] Soriano-Romani L,Contreras-Ruiz L,Lopez-Garcia A,et al.
Topical Application of TGF-beta-Activating Peptide,KRFK,Prevents Inflammatory Manifestations in the TSP-1-Deficient Mouse Model of Chronic Ocular Inflammation[J].Int J Mol Sci,2018,20(1):9.
[33] Quigley H A.Glaucoma[J].Lancet,2011,377(9774):1367-1377.
[34] Fuchshofer R.The pathogenic role of transforming growth factor-β2 in glaucomatous damage to the optic nerve head[J].Exp Eye Res,2011,93(2):165-169.
[35]劉国立,王宁利.新生血管性青光眼患者房水中血小板反应蛋白-1的表达及其与血管内皮生长因子相关关系的临床研究[J/OL].中华眼科医学杂志(电子版),2018,8(4):163-169.
[36] Murphy-Ullrich J E,Downs J C.The Thrombospondin1-TGF-beta Pathway and Glaucoma[J].J Ocul Pharmacol Ther,2015,31(7):371-375.
[37] Wang J,Fu M,Liu K,et al.Matricellular Proteins Play a Potential Role in Acute Primary Angle Closure[J].Curr Eye Res,2018,43(6):771-777.
[38] Klaassen I,De Vries E W,Vogels I M C,et al.Identification of proteins associated with clinical and pathological features of proliferative diabetic retinopathy in vitreous and fibrovascular membranes[J/OL].PLoS One,2017,12(11):e0187304.
[39] Sorenson C M,Wang S,Gendron R,et al.Thrombospondin-1 Deficiency Exacerbates the Pathogenesis of Diabetic Retinopathy[J].J Diabetes Metab,2013(Suppl 12).
[40] Fei P,Palenski T L,Wang S,et al.Thrombospondin-2 Expression During Retinal Vascular Development and Neovascularization[J].J Ocul Pharmacol Ther,2015,31(7):429-444.
[41] Shatos M A,Hodges R R,Morinaga M,et al.Alteration in cellular turnover and progenitor cell population in lacrimal glands from thrombospondin 1(-/-)mice,a model of dry eye[J].Experimental Eye Research,2016,153:27-41.
[42] Garcia-Posadas L,Hodges R R,Utheim T P,et al.Lacrimal Gland Myoepithelial Cells Are Altered in a Mouse Model of Dry Eye Disease[J].Am J Pathol,2020,190(10):2067-2079.
[43] Tan X,Chen Y,Foulsham W,et al.The immunoregulatory role of corneal epithelium-derived thrombospondin-1 in dry eye disease[J].Ocul Surf,2018,16(4):470-477.
[44] Smith R E,Reyes N J,Khandelwal P,et al.Secondary allergic T cell responses are regulated by dendritic cell-derived thrombospondin-1 in the setting of allergic eye disease[J].
J Leukoc Biol,2016,100(2):371-380.
[45] Sarfati M,Fortin G,Raymond M,et al.CD47 in the immune response:role of thrombospondin and SIRP-alpha reverse signaling[J].Curr Drug Targets,2008,9(10):842-850.
[46] Wang S,Neekhra A,Albert D M,et al.Suppression of Thrombospondin-1 Expression During Uveal Melanoma Progression and Its Potential Therapeutic Utility[J].Arch Ophthalmol,2012,130(3):336-341.
[47] Abeysinghe H R,Cao Q,Xu J,et al.THY1 expression is associated with tumor suppression of human ovarian cancer[J].Cancer Genet Cytogenet,2003,143(2):125-132.
[48] Sennlaub F,Valamanesh F,Vazquez-Tello A,et al.
Cyclooxygenase-2 in human and experimental ischemic proliferative retinopathy[J].Circulation,2003,108(2):198-204.
[49] Farnoodian M,Kinter J B,Yadranji Aghdam S,et al.
Expression of pigment epithelium-derived factor and thrombospondin-1 regulate proliferation and migration of retinal pigment epithelial cells[J/OL].Physiol Rep,2015,3(1):e12266.
[50] Farnoodian M,Sorenson C M,Sheibani N.Negative Regulators of Angiogenesis,Ocular Vascular Homeostasis,and Pathogenesis and Treatment of Exudative AMD[J].J Ophthalmic Vis Res,2018,13(4):470-486.
[51] Saban D R,Bock F,Chauhan S K,et al.Thrombospondin-1 derived from APCs regulates their capacity for allosensitization[J].J Immunol,2010,185(8):4691-4697.
[52] Cursiefen C,Cao J,Chen L,et al.Inhibition of hemangiogenesis and lymphangiogenesis after normal-risk corneal transplantation by neutralizing VEGF promotes graft survival[J].Invest Ophthalmol Vis Sci,2004,45(8):2666-2673.
(收稿日期:2021-01-04) (本文編辑:田婧)