杨桂花
[摘 要] 批判性思维是为了决定相信什么或做什么而进行的合理的、反省的思维。对小学数学而言,批判性思维就是对某个判断或算法进行质疑、论证,以期获得清晰的概念或确定的算法的过程。在“数与代数”领域教学中,教师引导学生寻找进行批判性思维的切入点,探寻培养学生批判性思维的有效策略,通过探寻发现创设导主宽容的环境、培养质疑探究的习惯、形成公正友善的心态可很好地培养学生的批判性思维。
[關键词] 小学数学;数与代数;批判性思维
“数与代数”是学习小学数学知识体系的起点。在这个领域的教学中,教师应帮助学生建立数感和符号意识,发展运算能力,树立模型思想;应帮助学生在探究过程中形成对思维活动各个环节、各个方面进行调整、校正的自我意识,促进学生往更广、更深处思考,从而有效培养学生的批判性思维。
一、寻找进行批判性思维的“切入点”
具有批判性思维的人能提出恰当的问题,做出合理的论证,就可以更全面、更精准地把握概念和算法。在“数与代数”领域不妨从以下几个方面教会学生如何进行批判性思维。
问题1:你是依据什么数量关系得出的算式?在解决问题的过程中,有些学生会没有根据、想当然地列式,对于数量关系并不明了的题目,也会不假思索地列式。这时,笔者往往会询问:你是依据什么数量关系得出的算式?经过提醒,学生回头再读题目,进一步厘清数量关系后,就会恍然大悟,推翻原来的方法。因此,做“依据什么数量关系得出算式”“列式是否与题意一致”之类的反思显得尤其重要。
例如在学习“简便运算”后,遇到“287+45-287+45”这类题目,往往有学生会上当。学生看到减号两边都有287+45,就很快地给出答案“0”。这时候,教师就不能直白地告诉学生正确答案,而要引导学生进行质疑:“你的算法利用了什么运算性质或运算律?”其实学生只是被算式的假象所迷惑,想当然地形成了自己的错误算法。因此,在简便计算的教学中,教师一定要让学生多质疑:“每一步的依据是什么?”如果学生能说清楚,那么就找到了算法的合理性。
问题2:结果是否能够经得住检验?在数学教学中,教师往往不太重视“检验”这一步,其实“检验”这一环节不容忽视,我们可以通过检验来审验算法的合理性,及时纠正结果或调整解题策略。
例如“元、角、分”(苏教版一年级下册)第68页有这样一题:1张50元可以换( )张20元和( )张10元。
教师巡视时发现有学生这样填:1张50元可以换( 1 )张20元和( 1 )张10元。也有学生填:1张50元可以换(1)张20元和(2)张10元。教师引导这些学生把自己所填的答案再进行计算,就会发现合起来以后不是50元,因此需要进行调整。
也有学生提出可以有序地试,从一张20元开始试起,以此类推。教师大力表扬该学生“很会思考”。
有学生总结道:“其实只要结果加起来是50元就对了,我们填好答案以后,还要回头算一算所填答案相加是不是50元。”教师表扬该学生强调“回头检验”是非常重要的一步。
也有学生发现一个规律: 20元的张数依次多1,后面10元的张数就少2,因为多了一张20元,就会少两张10元。(教师带头鼓掌表示肯定)
在“数与代数”领域,这样的例子数不胜数,需要教师引导学生养成检验的好习惯。
问题3:有没有其他更好的解题思路?一些题目往往可以从多种角度思考,有多种解题思路和算法,在具有可比性的多种思路之间,我们需要进行优选,这个过程就是优化学生的思维的过程。当学生解决完一个问题后,还可以进一步自我质疑:这种方法是不是最好的方法?还有不同方法吗?
新课标指出要培养学生反思质疑的习惯。在教学中教师要鼓励学生积极对常规解法进行质疑评价,拓宽思路。
例如百分数应用题:果园里桃树的棵数是梨树的80%,已知桃树有200棵,梨树有多少棵?
方法1:求单位“1”,用除法200÷80%。
方法2:将80%化成4∶5,用比例的方法4/5=200/x。
方法3:将80%化成4∶5,从求一份数入手列出200÷4×5。
方法4:列方程80%x=200。
学生的思维水平各有高低,对解题方法也就各有所好。但在对各种方法进行追问质疑,最后进行评价的过程中,他们都可以从中受到启发。因此从方法的多样性入手进行质疑,可以寻求到独特、新颖的解题方式。
问题4:是否有其他变化发展形式?有些具体的情境,当条件会发生变化时,原来的概念所指可能会有所变化。例如“在比较分数大小”或者“比较百分数大小”问题中常常出现“甲看了一本书的三分之二,乙看了一本书的四分之三,谁看得多?”“甲车运走了一堆煤的60%,乙车运走了一堆煤的80%,谁运走得多?”这一类题目,当原来的书或煤的多少不确定时,那么概念的所指是会发生变化的。在解决这一类问题的时候,需要学生明确概念所指的条件性问题,做缜密思考后再解决。
二、探寻培养批判性思维的有效策略
批判性思维是一种重要的思维品质,将批判性思维作为一种好习惯,贯穿于生活学习的始终,并非一朝一夕之事。
1. 创设民主宽容的环境
师生之间的活动是多元互动、生成知识的活动。学生在民主宽容的支持性成长环境中,心理是放松的,思维是活跃的,可以大胆地表达,踊跃地展示,充满自信。这样的课堂上,教师不仅仅要带着学生跑,还要“退到幕后”看着学生跑。学生不仅仅局限于现成的知识结论,还要在对问题的探究过程中发出质疑,质疑书本结论、质疑师生观点。教师要让学生在课堂上充分体会到师生关系的民主和平等、尊崇和笃信、宽容和接纳。
2. 培养质疑探究的习惯
作为技能的批判性思维,简而言之,就是要求学生具备在什么时候提出什么问题并进行探究的能力。一节课中教师提出的核心问题,可以促进学生更好地完成学习任务。当然教师更要有意识地引导学生自己提出关键性问题,让更多的学生把提问题当作一种自觉的活动。在围绕核心问题进行质疑探究论证的过程中,批判性思维得以充分培养。
例如教学“分数大小比较”时,教师呈现情境后,让学生围绕“怎样比较3/5和4/9的大小”这个问题进行自主探索,然后集体交流。学生出现了多种解题方法,如画线段图、通分、假设、化成小数等。在解释假设法的时候,教师及时引导学生追问质疑:为什么假设这本书有45页,而不假设其他的数?
还有一种方法是都与1/2比较,这种方法学生没想到,是教师主动抛出来,并安排小组讨论交流。
在多种方法基础上进行优化,师生最终总结得出最常用的方法是通分法。
在整个探究过程中,学生的思路是开阔的,思维是活跃的,学生通过自己的思考研究,与同伴的合作学习,不拘泥于一种方法,秉持自己的主见,学习他人方法,形成独特的想法,得出科学的结论,批判性思维能力也从中得到培养。
3. 形成公正友善的心态
课堂上的质疑对象可以是同学,可以是自己,也可以是老师。什么时候质疑,用怎样的方式质疑,这不仅涉及技能、规范问题,还涉及人与人之间如何和谐共处的问题。
在笔者平时调研中,发现学生跟从应答的场面在课堂中屡见不鲜。学生懒于思考,有口无心,缺乏自信,于是只想等待现成结果,盲从应答。教师一定要引导学生,课堂上既不盲从,也不诋毁,要以尊重为前提。在质疑批判的过程中,懷着友善的态度,去公正客观地加以分析评价。
例如教完“十几减9”后,笔者设计了游戏:用今天学到的知识编吹蜡烛的故事。
课件出示:有( )支蜡烛,吹灭了( )支,还有( )支亮着。
生1:有(12)支蜡烛,吹灭了(9)支,还有(3)支亮着。
生2:有(16)支蜡烛,吹灭了(9)支,还有(7)支亮着。
生3:老师,我有不同的想法,我觉得他们两个说得都对,但是这样说有点乱,其他同学会记不住的,我想从11减9开始说……(不紧不慢地说完)
师:哪个同学来评价一下生3的方法?
生4:这样按顺序说,既不重复又不遗漏,可以把所有答案都说出来。
师:我们一起用掌声表扬这几个同学的精彩回答。
生5:老师,我还有不同答案,有(10)支蜡烛,吹灭了(9)支,还有(1)支亮着。有(19)支蜡烛,吹灭了(9)支,还有(10)支亮着。
(冷场了一会儿)
生6:这两个虽然都对的,但是不符合刚才老师的要求,老师说用今天学习的知识来编故事。
师:你真是个认真听讲的好孩子,刚才这两个同学虽然不符合要求,但是他们也让大家明白如果没有“用今天的知识编故事”这个要求,符合这一类的算式有很多很多,有待于我们以后继续探究。
在上述练习活动中,突出了十几减9的算式有自身的排列规律,学生在具体的计算过程中逐步明确十几减9的计算方法,并体会到根据其他熟悉的算式进行推算的方便和快捷。通过这样的练习,学生的计算方法必将逐步优化,计算能力也会随之逐步提高。还有一点不容忽视的是,学生在认真倾听他人发言的基础上,提出自己想法的同时,也给予他人客观公正的评价,真是难能可贵。
探究知识的过程离不开批判性思维,批判的目的并不仅仅停留于质疑和否定,更在于对探究过程中待定的概念和算法进行反思分析论证,从而形成更好的判断。批判性思维是培育学生科学精神的保障,教师们有必要加强培养并坚持不懈。
3563501908255