马金姣 兰金苹,2 张 彤 陈 悦 郭亚璐,3 刘玉晴 燕高伟 魏 健 窦世娟 杨 明 李莉云 刘国振,*
过表达OsMPK17激酶蛋白质增强了水稻的耐旱性
马金姣1兰金苹1,2张 彤1陈 悦1郭亚璐1,3刘玉晴1燕高伟1魏 健1窦世娟1杨 明1李莉云1刘国振1,*
1河北农业大学生命科学学院, 河北保定 071001;2河北北方学院生命科学研究中心, 河北张家口 075000;3中国农业科学院农业基因组研究所, 广东深圳 518116
促分裂原活化蛋白质激酶(mitogen-activated protein kinase, MAPK)在真核生物中高度保守, 在水稻逆境应答反应中也发挥着重要作用。本研究表达纯化了水稻OsMPK17蛋白质, 制备了特异性抗体, 对多种非生物逆境胁迫下的蛋白质样品进行免疫印迹分析, 发现OsMPK17蛋白质在干旱胁迫下诱导表达, 提示该蛋白质在干旱胁迫应答中发挥作用。对脱落酸和茉莉酸甲酯处理的离体叶片蛋白质分析发现, OsMPK17蛋白质表达丰度下降, 提示该蛋白质的功能发挥可能受激素调控。为此, 构建了过表达OsMPK17蛋白质的载体, 转化水稻后筛选获得了OsMPK17蛋白质过表达的纯合株系。田间种植鉴定结果表明, 转基因株系的株高变矮、穗长变短、结实率降低。种子萌发期拟旱(PEG-6000)处理条件下, 过表达OsMPK17株系的种子长势明显比野生型好, 根长与芽长均显著大于野生型。幼苗期失水试验表明, 转基因植株的失水率低于野生型。在土培干旱胁迫后恢复浇水的试验中, 过表达OsMPK17蛋白质的转基因水稻生长也好于野生型。综上, 过表达OsMPK17蛋白质提高了水稻的耐旱性。本研究增进了对水稻基因功能的了解。
水稻; MAPK蛋白质; 免疫印迹; 逆境胁迫; 过表达; 基于抗体的蛋白质组学
蛋白质激酶可以使特定蛋白质侧链中的丝氨酸、苏氨酸或酪氨酸残基共价磷酸化[1], 它们在真核生物(酵母、哺乳动物、人及植物)中广泛存在[2-3]。促分裂原活化蛋白质激酶(mitogen-activated protein kinase, MAPK)属于丝/苏氨酸蛋白质激酶大家族, 通常由11个保守的亚结构域组成[4]。真核生物中的激酶级联反应一般通过3个磷酸激酶(MAP3K、MAP2K和MAPK)依次使底物蛋白磷酸化转导和放大信号, 调控特定基因的表达[5]。MAPK处于这个级联反应的末端, 它被上游MAP2K活化后再磷酸化下游的元件, 如转录因子WRKY、MYB等, 将信号传递下去。植物MAPK级联途径在多种信号传导过程中发挥着承上启下的作用, 与许多生物及非生物胁迫反应、激素反应、细胞分化和发育过程相互关联, 形成调控植物正常生长和逆境应答的网络。
是第一个被鉴定的水稻MAPK基因, 受稻瘟病菌()侵染和机械损伤诱导表达[6]。和受脱落酸(Abscisic acid, ABA)、高盐、干旱、高温(37°C)或重金属等非生物胁迫的诱导表达, 而紫外线和低温(12°C)不影响的表达水平, 但高温(37°C)会降低OsWJUMK1的水平[7]。Shi等[8]证明在脱落酸信号途径中能调高抗氧化物酶的活性。Xie等[9]证明OsMPK3能被OsMKK6磷酸化, 二者互作共同介导低温信号的传导[10]。和也参与盐胁迫反应。低温胁迫会启动信号途径, 提高水稻耐寒性[11]。OsMPK4与OsMKK1二者互作协调控制下游转录因子的表达并介导盐胁迫应答[12]。水稻在褐飞虱抗性反应中发挥作用, 其证据有OsMPK5与褐飞虱抗性基因Bphi008a互作, 且OsMPK5可磷酸化Bphi008a, 在褐飞虱感染后OsMPK5的表达水平发生变化[13]。OsMAPK6参与OsMKKK10-OsMKK4信号通路, 对水稻的籽粒大小和重量发挥调节作用[14]。和等参与低温胁迫应答反应, 高温和脱落酸处理还能使的表达上调, 干旱和光照也对其有不同程度的影响[15]。基因提高种子萌发期对干旱和盐胁迫的耐受性[16]。Lee等[17]发现在水稻盐胁迫中起负调控作用。综上可见, 多个水稻MAPK都在逆境胁迫应答中发挥作用。所以进一步鉴定逆境应答相关的MAPK基因, 探讨水稻逆境胁迫应答机制具有重要的理论意义和应用价值。
目前对水稻MAPK家族基因功能研究的线索主要来自遗传分析及转录数据, 其中基因在逆境胁迫反应中的功能研究尚未见报道。本研究对不同逆境胁迫下的蛋白质样品进行免疫印迹分析, 筛查发现OsMPK17蛋白质在干旱胁迫下被诱导表达, 提示该蛋白质在干旱胁迫应答中有作用。为了调查OsMPK17的功能, 构建了过表达OsMPK17蛋白质的载体, 转化水稻后筛选获得了OsMPK17蛋白质过表达的纯合株系, 在田间表型鉴定的基础上, 通过PEG-6000拟旱处理、幼苗期失水试验和实际土培干旱胁迫试验, 证明过表达OsMPK17蛋白质的转基因水稻生长优于野生型, 该证据表明OsMPK17蛋白质在干旱胁迫应答过程中发挥作用。
所用水稻品种为TP309 (粳稻)。克隆用的大肠杆菌菌株为DH5α, 融合蛋白质表达菌株为BL21(DE3) pLysS和Codon Plus。原核表达载体为pET30a和pGST (由pGEM载体改造[18])。pUC57-3HA质粒的插入片段由南京金斯瑞生物科技有限公司合成; pEASY-T1质粒购自生工生物工程(上海)股份有限公司; pUBI-C4300质粒由Pamela Ronald博士(UC Davis, USA)赠送。
水稻基因全长cDNA质粒AK070644 (Os05g50120)购自日本农业生物资源研究所水稻基因组资源中心(Rice Genome Resource Center, National Institute of Agrobiological Sciences)。利用Primer CE软件[19]设计引物, 由北京华大基因研究中心有限公司合成。上游引物序列为5'-GCATGGGCGGCCGCGCCCGCTC-3', 其中下画线为I限制性内切酶位点, 下游引物序列为5'-GCGGTTTTCAGTTGAGCAAC-3', 其中下画线为I限制性内切酶位点。以带有全长的cDNA的质粒为模板进行PCR扩增, 对PCR产物和pET30a载体进行双酶切并切胶回收, 将连接后的产物转化到大肠杆菌 DH5α中, 提取重组质粒 DNA, 双酶切验证后送北京华大基因研究中心有限公司测序验证。
将测序确认正确的pET30a-MPK17质粒转入表达菌Codon plus, 挑取单菌落过夜培养, 按1∶10000的比例转接至100 mL含50 μg mL–1卡那霉素的LB液体培养基中诱导表达, 37°C振荡培养至OD600为0.6~0.8, 按1∶200比例加入100 mmol L–1的IPTG, 25°C过夜培养, 收菌后用20 mL 10 mmol L–1Tris-HCl (pH 8.0)将菌液悬浮, 超声破碎(500 W, 60次, 每次10 s, 间隔15 s), 用His-tag beads进行蛋白质纯化, 10% SDS-PAGE分离, 考染检测重组蛋白质的浓度和纯度。
用大肠杆菌表达并纯化后的OsMPK17蛋白质做免疫原, 免疫小鼠制备单克隆抗体, 抗体的制备由北京华大蛋白质研发中心有限公司完成。
将水稻样品装入离心管, 用液氮速冻, 在研磨机(鼎昊源科技, 型号TL2010)上振荡, 1400 r min–1, 30 s, 低温研磨直至粉末状。按照样品和蛋白质提取缓冲液(62.5 mmol L–1Tris-HCl pH 7.4、10%甘油、2% SDS、1 mmol L–1PMSF、2 mmol L–1EDTA、5% β-巯基乙醇) 3∶8比例, 充分混匀后置冰上, 放置10 min, 每隔2 min 剧烈振荡30 s, 12,000 ×, 4°C离心30 min后取上清液即为水稻组织总蛋白质。经SDS-PAGE进行分离, 上样体积一般为10 μL, 电泳完成后将蛋白质转移到PVDF膜上, 按文献[20]描述的过程进行WB检测, 并用抗HSP抗体的检测信号作为标定上样量的内参[21], 二抗为HRP标记的羊抗鼠二抗(北京华大蛋白质研发中心有限公司)。用化学发光成像仪(MiniChemi 610, 北京赛智创业科技有限公司)检测, Image J软件[22]采集信号。
冷、热、淹和恒光、恒暗等胁迫处理方法及部分样品来自本实验室积累的蛋白质样品资源库RiceS-A300[23]。
参照文献[24]进行水稻离体叶片的激素处理。取4~6周龄的水稻幼苗, 剪取长度为2 cm的叶片, 置培养皿中, 加15 mL 100 μmol L–1脱落酸(abscisic acid, ABA)或100 μmol L–1茉莉酸甲酯(methyljasmonic acid, MeJA), 以灭菌水为对照, 在培养箱中培养, 温度为30°C, 光照周期为L12 h/D12 h, 取材时间点分别为0、6 h、12 h、1 d、2 d、3 d、4 d、5 d和6 d。
为了便于后续检测, 以pUC57为骨架, 通过基因合成改造成带3HA和终止子的质粒pUC57-3HA, 在3HA序列上游引入I和I限制性内切酶位点, 3HA之前有I酶切位点, 之后是终止密码子, 下游是I和d III限制性内切酶位点。利用pEASY-T1质粒构建一个中间载体, 将pUC57-3HA中的I与d III双酶切片段连接到同样双酶切的pEASY-T1质粒中, 称为pEASY-T1-3HA。将基因的扩增产物用I和I双酶切, 插入pEASY-T1-3HA, 测序验证后将含有目的基因和3HA的片段用I和dIII连接到pUBI-C4300质粒中[25]。
通过农杆菌介导法将质粒DNA转入水稻, 在培养基中加甘露糖进行筛选, 遗传转化由武汉伯远生物科技有限公司完成[26-27]。水稻遗传转化的主要步骤为, 从成熟胚诱导愈伤组织, 愈伤组织与根癌农杆菌的共培养, 抗性愈伤组织筛选, 预分化、分化、生根培养基培养出苗, 炼苗后温室培养[28]。
将野生型和转基因水稻种植于河北农业大学西校区稻竹园, 在成熟期照相并测量农艺性状。测量5株以上株高、稻穗长度、结实率和分蘖数, 计算平均值和方差。
参照文献[29]进行PEG-6000处理: 分别取对照和转基因材料30粒种子, 用70%无水乙醇浸泡(摇床上轻轻摇晃) 5 min, 用灭菌水洗2次, 每次1 min, 用25%次氯酸钠浸泡30 min, 用灭菌水清洗3次。在装有2层滤纸的玻璃培养皿中倒入15 mL 20% PEG-6000, 以灭菌水为对照, 将消毒后的种子用镊子均匀摆放在培养皿中, 培养箱温度为30°C, 光周期L12 h/D12 h, 7 d后测量株高和芽长等, 并照相记录。
取温室培养的四叶期水稻幼苗, 剪取长度为3 cm左右的叶片, 置室温(30°C)条件下, 每0.5 h称重一次。以0时间点重量为0, 指定时间点为W, 失水率(%) = (0−W) × 100/W。试验重复3次, 计算平均值和方差[30-31]。
盆栽参试水稻材料, 种子经30°C浸泡3 d露白, 播于蛭石土(土壤与蛭石1∶1), 30°C、光周期L12 h/D12 h培养5 d, 停止浇水, 让花盆自然干燥, 经一定时间的干旱胁迫后, 植株出现萎蔫伴有死亡的迹象时, 恢复浇水, 观察并照相记录水稻状况。
利用设计的PCR引物, 以带有全长OsMPK17 cDNA的质粒为模板进行扩增(图1-A), 扩增产物为1800 bp左右, 符合预期, 将PCR产物和pET30a表达载体进行双酶切, 连接转化细菌后提取质粒DNA进行双酶切验证(图1-B), 酶切产物为2条带, 分子量较高的是载体带, 约为6000 bp, 分子量较低的是插入片段, 约为1800 bp。将双酶切正确的质粒再进行测序验证, 挑取序列正确的重组质粒pET30a- MPK17转入表达菌Codon plus中, 挑取单菌落进行诱导表达。收集的菌体经超声破碎后离心分离, 用His-tag beads亲和层析柱纯化, 蛋白质样品经SDS-PAGE分离后, 考染观察(图1-C), 在大肠杆菌的沉淀中能清楚地看到诱导条带。利用纯化后的融合OsMPK17蛋白质作为免疫原, 免疫小鼠制备单克隆抗体。
本实验室张剑硕等[23]报道了水稻RiceS-A300资源库构建的工作, 为了获得OsMPK17在逆境胁迫应答过程中可能的功能线索, 利用所制备的特异性抗体, 对这些样品进行了WB分析, 发现在干旱胁迫过程中, OsMPK17的表达量持续升高, 而对照样品中OsMPK17蛋白质的表达量维持稳定(图2-A), 提示该基因在干旱胁迫反应中可能发挥作用。对其他胁迫处理的材料进行WB分析, 没有检测到明显的表达变化(数据未附)。接下来, 以离体水稻叶片为材料, 进行ABA和MeJA处理, 提取蛋白质后进行WB分析, 发现ABA和MeJA处理均能降低OsMPK17蛋白质的丰度(图2-B), 比较而言, ABA处理的效果更为明显, 由此推测OsMPK17蛋白质的功能发挥与ABA、MeJA等激素有一定相关性。
图1 水稻OsMPK17基因的克隆与融合蛋白质表达
A:水稻基因的PCR扩增: 以带有全长序列的质粒DNA为模板, 用上游引物5′-GCGGTACCATGGG CGGCCGCGCCCGCTC-3′, 下游引物5′-GCGAGCTCGGTTTTC AGTTGAGCAAC-3′, 扩增s基因。B: pET30a-MPK17重组质粒的双酶切验证: 将PCR产物与pET30a用I+I双酶切, 连接后转化克隆菌DH5α, 提取质粒后再进行双酶切鉴定。C:融合蛋白质OsMPK17的诱导表达及考染检测: 取pET30a-MPK17酶切验证的质粒进行测序再验证, 将测序正确的质粒转化表达菌Codon plus诱导表达。在含50 μg mL–1卡那霉素的LB液体培养基中诱导表达, 振荡培养至OD600为0.6~0.8, 加入IPTG, 25°C过夜培养, 收菌后超声破碎, 离心取上清液(S)和沉淀(P), 0: 0时间点培养物, 用10% SDS-PAGE分离、考染。M为分子量标记; PCR为扩增产物; K+S为I+I双酶切产物。
A: PCR amplification of ricegene. A plasmid containing full-lengthgene was used as template for PCR amplification ofgene using primers 5′-GCGGTACCATGGG CGGCCGCGCCCGCTC-3′ and 5′-GCGAGCTCGGTTTTCAGTT GAGCAAC-3′. B: Verification of recombinant pET30a-MPK17 plasmid by double digestion usingI andI. The PCR products and pET30a plasmid DNA were digested byI andI, the ligation product was used to transform DH5α. Recombinant plasmid was verified by double digestion. C: Induction of fusion protein OsMPK17 and Coomassie blue staining. Correct pET30a- MPK17 plasmid verified by double digestion was double checked by sequencing. Sequencing verified plasmid was transformed to Codon plus bacterial strain to express fusion protein. The bacteria was cultured in LB medium containing 50 μg mL–1kanamycin and IPTG which was added when the OD600reached 0.6–0.8. The bacteria was collected after over night culture at 25°C and disrupted by sonication. The supernatant (S) and pellet (P) were obtained after centrifugation and total protein was separated by 10% SDS-PAGE and stained with Coomassie blue. 0: Total protein isolated at 0 time point. M: Molecular weight marker; PCR: Amplification products; K+S: Double digestion product usingI andI.
设计PCR引物, 以cDNA质粒为模板, 扩增获得了全长的基因(图3-A), 双酶切后装入pEASY-3HA中间载体, 测序验证后, 用内切酶d III和I切下片段, 电泳检测到1848 bp的插入片段(图3-B), 装入水稻转化质粒pUBI-C4300中, 获得了pUBI-C4300-MPK17转化载体, 经I和I酶切检测到符合预期的插入片段(图3-C), 证明获得了正确的过表达载体。
图2 水稻OsMPK17蛋白质的表达特征分析
A: 干旱胁迫: 发芽后生长5 d的水稻幼苗在20% PEG-6000中水培, 分别于胁迫处理的0、1 h、2 h、4 h、8 h、12 h、1 d 、2 d和3 d取地上部样品, 提取总蛋白质后进行免疫印迹(Western blot, WB)分析。CK: 对照; Drought: PEG-6000胁迫处理。HSP: 以HSP82抗体检测的信号作为上样内参。B: 激素处理: 剪下水稻幼苗叶片在培养皿中培养, 分别添加100 μmol L–1ABA或100 μmol L–1MeJA进行激素处理, 取材时间点为0、6 h、12 h、1 d、2 d、3 d、4 d、5 d和6 d, 以水培为CK, 提取叶片样品总蛋白质进行WB分析。HSP: 以HSP82抗体检测的信号作为上样内参。
A: Drought stress treatment: rice seedlings grown for 5 days were treated by 20% PEG-6000. Leaf samples were collected at 0, 1 h, 2 h, 4 h, 8 h, 12 h, 1 d, 2 d, and 3 d respectively; WB analysis were carried out for isolated total proteins. HSP: Loading control for WB analysis using HSP82 antibody. B: Treatment with hormones: leaves of rice were cultured in petri dish, 100 μmol L–1ABA or 100 μmol L–1MeJA was supplemented as hormone treatments. Samples were collected at 0, 6 h, 12 h, 1 d, 2 d, 3 d, 4 d, 5 d, and 6 d time points, respectively. Total proteins were isolated and analyzed by WB. HSP: Loading control for WB analysis using HSP82 antibody.
以水稻品种TP309为受体, 通过农杆菌介导的途径转化水稻, T0代获得了11个转基因株系, PCR鉴定其中10个为阳性, 收获阳性植株种子, T1代再次鉴定筛选阳性株系, 收获种子后T2代获得了纯合的过表达OsMPK17的水稻材料, 4个转基因株系(A202、A204、A210和A212)的PCR和WB检测结果如图4所示, 所检测的4个转基因株系的植株全部为PCR阳性和WB阳性, 而野生型受体水稻均表现阴性。由于过表达的OsMPK17蛋白质带有3×HA标签, 分子量比水稻中原有的OsMPK17蛋白质稍大, 所以在WB中可以检测到2个条带, 分子量稍大的是超表达的版本, 记做MPK17-OX, 分子量较小的是水稻中原来的版本, 记作MPK17-Native, 比较2个条带的信号强度可见, 二者的丰度比较接近。
在大田栽培生长过程中调查了水稻植株的表型和主要农艺性状, 从图5可见, 过表达OsMPK17蛋白质转基因植株的株高、穗长和结实率等指标均低于野生型, 而分蘖数的差别不明显, 说明OsMPK17过表达对水稻的正常生长产生了不利的影响。
在干旱胁迫过程中, OsMPK17蛋白质的表达丰度提高, 提示该蛋白质在抵抗干旱胁迫过程中发挥正调控作用。图6-A表明4个过表达OsMPK17的株系均比野生型生长健壮, 其根长和芽长(图6-B)均明显高于野生型对照, 说明OsMPK17蛋白质的过表达提高了水稻发芽期的耐旱性。
为了比较过表达OsMPK17蛋白质水稻的耐旱性, 进一步调查了水稻植株在苗期的失水率。图7表明4个过表达株系的失水率均低于或不高于野生型对照, 失水率试验支持过表达OsMPK17植株具有较好的保水性, 这可能是其耐旱性提高的原因之一。
为了进一步鉴定转基因水稻的耐旱性, 将2个转基因株系(A202和A212)与野生型对照进行同盆栽培, 以便使培养条件尽量保持一致, 种子发芽后正常盆栽培养5 d, 停止浇水, 花盆土壤自然干燥, 使水稻幼苗承受实际的干旱胁迫, 经不同天数的干旱胁迫后, 待部分植株出现萎蔫并呈现叶片有50%干枯时, 恢复浇水并观察水稻苗的生长状况(图8)。转基因苗(右侧)在胁迫处理时和恢复浇水后都表现比野生型水稻苗(左侧)有更多的绿色部分, 说明转基因苗具有较强的耐旱性。
图3 水稻OsMPK17基因过表达载体的构建与鉴定
A: 水稻基因的PCR扩增; B:d III +I双酶切鉴定pEASY-MPK17-3HA重组质粒; C:I+I双酶切鉴定pUBI-C4300-MPK17重组质粒。以带有目的基因cDNA的质粒为模板, 用上游引物5′-GCATGGGCGGCCGCGCCC GCTC-3′ (下画线为I限制性内切酶位点)和下游引物5′-GCGGTTTTCAGTTGAGCAAC-3′ (下画线为I限制性内切酶位点)进行PCR扩增。将扩增的片段插入中间载体pEASYT1-3HA, 双酶切验证。将测序正确的中间载体切胶回收目的片段, 再用I+I双酶切插入转化载体pUBI-C4300, 获得重组质粒DNA双酶切验证。M: 分子量标记; PCR: 扩增产物; H+X:d III+I双酶切; K+S:I+I双酶切。
A: PCR amplification of ricegene; B:d III+I restriction enzyme digestion of recombinant pEASY-MPK17-3HA plasmid; C:I+I restriction enzyme digestion of recombinant pUBI-C4300-MPK17 plasmid. PCR amplification ofgene using plasmid containing full-lengthcDNA as template, the primers used were 5′-GCATGGGC GGCCGCGCCCGCTC-3′ (I restriction site was underlined) and 5′-GCGGTTTTCAGTTGAGCAAC-3′ (I restriction site was underlined). The amplified fragment was inserted into pEASY-3HA vector and verified by double digestion. Sequence verified pEASY-MPK17-3HA was digested byI+I, the fragment was inserted into pUBI-C4300 and verified by double digestion. M: Molecular weight marker; PCR: PCR amplification product; H+X:d III+I restriction enzyme digestion; K+S:I+I restriction enzyme digestion.
蛋白质是生命活动的主要执行者, 蛋白质表达特征中蕴含着功能相关的线索。本研究制备了水稻OsMPK17蛋白质特异的抗体, 经WB分析发现该蛋白质在干旱胁迫过程中表达上调, 由此推测其在耐旱过程中发挥正调控作用, 为此构建了OsMPK17的过表达载体, 采用农杆菌介导法转化水稻, 获得了过表达OsMPK17蛋白质的转基因株系, 在萌发期对转基因材料进行PEG-6000的拟旱处理、叶片失水率调查和幼苗期的实际干旱试验, 结果均表明过表达OsMPK17转基因植株提高了水稻的耐旱性。
在转基因材料的鉴定方面, 本研究除采用常规的PCR技术鉴定阳性植株外, 还通过WB对OsMPK17蛋白质的过表达进行了鉴定, 鉴定结果表明绝大部分PCR阳性植株均表现WB阳性, 但也发现有少数PCR阳性的植株表现WB阴性(数据未附), 说明PCR阳性并不能确保蛋白质的过表达, 通过WB进行鉴定是必要的。WB的检测直接证明了过表达OsMPK17蛋白质的存在。从技术上讲, PCR具有更高的灵敏度, 但也容易出现假阳性, 而WB检测的灵敏度较低, 一般不容易出现假阳性结果。有意思的是, 过表达的OsMPK17与野生型OsMPK17蛋白质的分子量有所不同, 能够被电泳区分, 所以WB可清晰地检测到野生型和过表达的OsMPK17蛋白质。根据条带信号的强度, 可大致判断出二者的丰度基本相近。用WB对转基因材料进行鉴定, 获得了转基因材料中目标蛋白质的有无、丰度及分子量等信息。
图4 过表达OsMPK17蛋白质转基因水稻筛选与鉴定
上部: PCR结果; 中部: WB检测转基因水稻中OsMPK17蛋白质; 下部: HSP检测的信号为上样参照。WT: 野生型; A202、A204、A210和A 212为不同的转基因株系; 1、2、3、4、5、6、7、8和9为同一株系内不同的单株; PCR: PCR产物; MPK17-OX: 过表达的OsMPK17蛋白质; MPK17-Native: 水稻中原来的OsMPK17蛋白质。
Upper panel: PCR product; Middle panel: WB detection of OsMPK17 protein in transgenic rice plants; Lower panel: HSP signal was used as loading control; WT: wildtype rice plants; A202, A204, A210, and A212 are independent transgenic lines; 1, 2, 3, 4, 5, 6, 7, 8, and 9 are independent plants among the same transgenic lines; PCR: PCR products; MPK17-OX: Over expressed OsMPK17 protein; MPK17-Native: the original form of OsMPK17 protein in rice.
图5 过表达OsMPK17对水稻表型及农艺性状的影响
上部照片: 4个转基因株系(A202、A204、A210和A212)及对照水稻成熟期整株和穗部照片; 下部柱状图: 4个转基因株系及对照的株高、穗长、结实率和分蘖数的柱状图。每个指标测量5个以上单株, 计算平均值和方差。
Photographs on the upper panel: rice whole plants and ears at mature stage of four transgenic lines and control. Bar graphs on the lower panel: plant height, spike length, seed setting rate, and tillers number of the four transgenic lines and control.
图6 过表达OsMPK17蛋白质水稻发芽期耐旱性鉴定
A: 水稻种子萌发照片。上部: 对照(水); 下部: 干旱胁迫(20% PEG-6000)。B: 水稻种子萌发的根长和芽长柱状图。WT为野生型; A202、A204、A210和A212为4个转基因株系。试验重复3次, 计算平均值和方差。*表示在0.05水平差异显著;**表示在0.01水平差异显著。
A: Photographs for seeds at germination. Upper panel: control (H2O); Lower panel: drought stress (20% PEG-6000) treatment. B: Bar graphs of root and shoot lengths for seeds at germination. WT: wild type; A202, A204, A210, and A212 are transgenic lines. Experiments were carried out with three replicates; average and standard derivations were calculated.*Significant at< 0.05.**Significant at< 0.01.
利用前期建立的RiceS-A300水稻蛋白质样品资源库[23], 比较方便地实现了OsMPK17蛋白质在各种非生物逆境胁迫下表达特征的调查, 由此发现OsMPK17蛋白质在干旱胁迫条件下表达丰度被明显诱导上调, 而在其他非生物逆境胁迫下没有发现明显的变化, 蛋白质表达特征数据提示该蛋白质可能在干旱胁迫下发挥作用。另外, 我们也检测了转基因水稻在干旱胁迫下OsMPK17的丰度变化, 未检测到原有版本OsMPK17-Native条带信号的明显增强, 这可能是由于过表达的版本OsMPK17-OX发挥作用, 抑制了OsMPK17-Native的诱导表达。通过对激素处理的离体叶片中OsMPK17蛋白质分析, 发现ABA和MeJA处理会降低OsMPK17的表达丰度。
图7 过表达OsMPK17蛋白质植株的失水率鉴定
WT为野生型; A202、A204、A210和A212为4个转基因株系。在水稻幼苗四叶期剪取3 cm左右叶片, 在室温下(30°C), 每30 min称重1次, 试验重复3次, 计算平均值和方差。
WT: wild type; A202, A204, A210, and A212 are transgenic lines. At four leaves stage, leaf blades were cut into pieces at about 3 cm, which were weighed every 30 min at room temperature (30°C). The experiment were repeated three times; the average and standard derivation were calculated.
图8 过表达OsMPK17蛋白质转基因水稻苗期耐旱性鉴定
水稻苗期干旱胁迫及恢复浇水试验, 照片分别为0时间点、干旱胁迫8 d和恢复浇水3 d时。WT为野生型, A202和A212为过表达OsMPK17的转基因株系。
WT: wild type; A202 and A212 were transgenic lines overexpressed OsMPK17 protein. The drought and restore experiments were carried out at seedling stage; the photographs were taken at 0 time point, eight days after drought treatment, and re-watering for 3 days.
对不同发育时期、不同部位组织中OsMPK17蛋白质的丰度分析发现, OsMPK17主要在叶片中表达, 在其他检测的部位中, 包括根、茎、叶鞘、幼穗、花药、颖壳等, 均没有检测到OsMPK17蛋白质(数据未附), 由此推测其功能应该主要通过叶片来发挥。对转录数据进行挖掘分析(http://rice.plantbiology. msu.edu/)表明,基因的转录主要在花药中, 在其他部位的转录信号很低(附表1)。比较蛋白质和转录信息可以看出, 二者相关性不大。此种情况下, 基于WB分析获得的蛋白质丰度信息更为直观, 也应该更具参考价值。蛋白质的表达特征既是功能表现的一种外在形式, 也是其功能的组成部分。开展重要蛋白质的表达特征调查具有重要的意义, 这也是基于抗体的靶向蛋白质组学策略试图发挥作用的方向[32]。
水稻基因组中有17个MAPK基因, 目前, 已经鉴定到多个MAPK在生物胁迫或非生物胁迫反应中发挥功能。如通过RNAi技术降低OsMPK5表达后, 也降低了水稻对ABA的敏感性以及对干旱、盐和冷胁迫的敏感性, 但提高了对稻瘟病菌和白叶枯病菌的抗性[10,33-34]。可以认为, OsMPK5在水稻的胁迫反应中起着两方面的作用, 既可正调控ABA途径中的非生物胁迫反应, 又能负调控对稻瘟病和白叶枯病的抗病反应。此外, OsMPK7能被多种生物胁迫和非生物胁迫诱导表达[10,15,35], OsMPK17-1 (OsBWMK1)和OsMPK4 (OsMPK2)也参与植物的防御反应[6,36]。本研究中对OsMPK17的功能阐释增进了对水稻MAPK蛋白质激酶的了解。本研究通过WB检测到OsMPK17蛋白质在激素ABA和MeJA处理后, 表达丰度下降, 由此可推测OsMPK17蛋白质介导的水稻耐旱性可能与激素相关。据报道, 高水平的ABA含量会提高种子萌发期对旱的耐受性、抑制种子发芽、侧根形成、幼苗生长等, 通过促进气孔的闭合减少水分蒸腾来调控旱胁迫应答反应[37-43]。此外, 外源ABA的处理会影响植物中许多MAPK基因的表达, MAPK参与了ABA介导的多种信号通路, 包括氧化防御、保卫细胞信号转导和种子的萌发等[44-47]。在烟草和拟南芥中, MeJA和SA可以诱导MPK6和MPK3的表达及SIPK的瞬时表达[48-49]。这些数据提示MAPK的功能发挥与SA、MeJA及ABA等激素有密切的关系。一般认为干旱能诱导ABA含量的增加, 本文研究结果表明干旱也能诱导OsMPK17蛋白质的表达, 并增强了水稻的耐旱性。据此可推测ABA含量增加和OsMPK17的丰度增加都是干旱应答的正调控因子。但是本研究又发现, ABA处理会下调OsMPK17的丰度, 所以二者负相关。根据这些数据可以推测, 在干旱胁迫下ABA的含量会被诱导提高, 水稻应该表现耐旱性, 但ABA含量的提高能抑制OsMPK17蛋白质的表达, 如此又造成水稻的耐旱性下降, 这样两个因素在水稻中达到平衡, 其净结果表现为正常情况下水稻的耐旱性只能维持在一个特定的水平。本研究结果鉴定到OsMPK17蛋白质与干旱胁迫应答的相关性, 可能是通过激素介导响应的, 今后可在耐旱性增强机制、激素是如何发挥作用等方面开展进一步的工作。
表达了水稻OsMPK17蛋白质, 制备了特异抗体, OsMPK17蛋白质在干旱胁迫条件下表达量升高, 在ABA和MeJA等激素处理下表达量下降。获得了过表达 OsMPK17蛋白质的转基因水稻植株, 其株高、穗长和结实率等农艺指标均低于对照。过表达OsMPK17蛋白质提高了水稻发芽期的耐旱性, 降低了幼苗期的失水率, 实际干旱恢复试验也表明过表达OsMPK17植株具有较好的耐旱性。
附表1基因在不同组织中的转录丰度比较
Supplementary table 1 Transcriptional abundance comparison ofgene among different rice tissues
组织 LibrariesFPKM 四叶期幼苗 Seedling four-leaf stage0.640 幼苗地上部 Shoots0.904 20 d的叶片 20-day leaves0.637 抽穗前花序 Pre-emergence inflorescence3.036 抽穗后花序 Post-emergence inflorescence6.281 花药 Anther169.643 雌蕊 Pistil2.371 开花后5 d种子 5 DAP seed5.971 开花后10 d种子 10 DAP seed10.372 开花后25 d幼胚 25 DAP embryo7.719 开花后25 d胚乳 25 DAP endosperm7.230
从数据库http://rice.plantbiology.msu.edu/下载基因的转录信息, 列于表中。FPKM: 每百万被测到的外元中每千碱基所含目标片段数。DAP: 授粉后天数。
Transcriptomic abundance of ricegene was downloaded from http://rice.plantbiology.msu.edu/ database and listed in the table. FPKM: fragments per kilobase of exon per million fragments mapped. DAP: days after pollination.
[1] Johnson G L, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK and p38 protein kinases., 2002, 298: 1911–1912.
[2] Widmann C, Gibson S, Jarpe M B, Johnson G L. Mitogen-activated protein kinase: conservation of a three kinase module from yeast to human., 1999, 79: 143–180.
[3] Bogre L, Meskiene I, Heberle-bors E, Hirt H. Stressing the role of MAP kinases in mitogenic stimulation., 2000, 43: 705–718.
[4] Roberts C J, Nelson B, Marton M J, Stoughton R, Meyer M R, Bennett H A, He Y, Dai H, Walker W L, Hughes T R, Tyers M, Boone C, Friend S H. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles., 2000, 287: 873–880.
[5] Cristina M, Petersen M, Mundy J. Mitogen-activated protein kinase signaling in plants., 2010, 61: 621–649.
[6] He C, Fong S H, Yang D, Wang G L. BWMK1, a novel MAP kinase induced by fungal infection and mechanical wounding in rice., 1999, 12: 1064–1073.
[7] Agrawal G K, Agrawal S K, Shibato J, Iwahashi H, Rakwal R. Novel rice MAP kinases OsMSRMK3 and OsWJUMK1 involved in encountering diverse environmental stresses and developmental regulation., 2003, 300: 775–783.
[8] Shi B, Ni L, Liu Y. OsDMI3-mediated activation of OsMPK1 regulates the activities of antioxidant enzymes in abscisic acid signaling in rice., 2014, 37: 341–352.
[9] Xie G, Kato H, Imai R. Biochemical identification of the OsMKK6-OsMPK3 signaling pathway for chilling stress tolerance in rice., 2012, 443: 95–102.
[10] Xiong L, Yang Y. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase., 2003, 15: 745–759.
[11] Zhang Z, Li J, Li F, Liu H, Yang W, Chong K, Xu Y. OsMAPK3 phosphorylates OsbHLH002/OsICE1 and inhibits its ubiquitination to activate, OsTPP1, and enhances rice chilling tolerance., 2017, 43: 731–743.
[12] Wang F, Jing W, Zhang W. The mitogen-activated protein kinase cascade MKK1-MPK4 mediates salt signaling in rice., 2014, 227: 181–189.
[13] Hu J,Zhou J,Peng X,Xu H,Liu C,Du B,Yuan H,Zhu L, He G.TheBphi008ageneinteractswith theethylenepathwayand transcriptionally regulates MAPKgenesin the response of rice to brown planthopper feeding., 2011, 156: 856–872.
[14] Xu R, Duan P, Yu H,Zhou Z, Zhang B, Wang R, Li J, Zhang G, Zhuang S, Lyu J, Li N, Chai T, Tian Z, Yao S, Li Y. Control of grain size and weight by the OsMKKK10-OsMKK4-OsMAPK6 signaling pathway in rice., 2018, 11: 860–873.
[15] Wen J Q, Oono K, Imai R. Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in rice., 2002, 129: 1880–1891.
[16] 石佳, 杨丹丹, 葛慧雯. 水稻OsMPK15的cDNA克隆和转录水平分析. 生物技术通报, 2018, (6): 66–72. Shi J, Yang D D, Ge H W. cDNA cloning and transcriptional level analysis of OsMPK15 in rice (L.)., 2018, (6): 66–72 (in Chinese with English abstract).
[17] Lee S K, Kim B G, Kwon T R, Jeong M J, Park S R, Lee J W, Byun M O, Kwon H B, Matthews B F, Hong C B, Park S C. Overexpression of the mitogen-activated protein kinase gene OsMAPK33 enhances sensitivity to salt stress in rice (L.)., 2011, 36: 139–151.
[18] Liu G Z, Pi L Y, Walker J C, Ronald P C, Song W Y. Biochemical characterization of the kinase domain of the rice disease resistance receptor-like kinase XA21., 2002, 277: 20264–20269.
[19] Cao Y, Sun J, Zhu J, Li L, Liu GPrimer C E: designing primers for cloning and gene expression., 2010, 46: 113–117.
[20] 郭亚璐, 马晓飞, 史佳楠, 张柳, 张剑硕, 黄腾, 武鹏程, 康昊翔, 耿广荟, 陈浩, 魏健, 窦世娟, 李莉云, 尹长城, 刘国振. 转基因水稻中CAS9蛋白质的免疫印迹检测. 中国农业科学, 2017, 50: 3631–3639. Guo Y L, Ma X F, Shi J N, Zhang L, Zhang J S, Huang T, Wu P C, Kang H X, Geng G H, Chen H, Wei J, Dou S J, Li L Y, Yin C C, Liu G Z. Western blot detection of CAS9 protein in transgenic rice, 2017, 50: 3631–3639 (in Chinese with English abstract).
[21] Li X, Bai H, Wang X, Li L, Cao Y, Wei J, Liu Y, Liu L, Gong X, Wu L, Liu S, Liu G. Identification and validation of rice reference proteins for Western blotting.,2011, 62: 4763–4772.
[22] 牛东东, 郝育杰, 荣瑞娟, 韦汉福, 兰金苹, 史佳楠, 魏健, 李雪姣, 杨烁, 奚文辉. 转基因水稻中GUS蛋白质的检测及其表达特征. 中国农业科学, 2014, 47: 2715–2722. Niu D D, Hao Y J, Rong R J, Wei H F, Lan J P, Shi J N, Wei J, Li X J, Yang S, Xi W H. Detection and expression of GUS protein in transgenic rice., 2014, 47: 2715–2722 (in Chinese with English abstract).
[23] 张剑硕, 马金姣, 张彤, 陈悦, 魏健, 张柳, 史佳楠, 徐珊, 燕高伟, 杜铁民, 窦世娟, 李莉云, 刘丽娟, 刘国振. 水稻蛋白质样品资源库RiceS-A300的建立与应用. 中国农业科学, 2018, 51: 3625–3638. Zhang J S, Ma J J, Zhang T, Chen Y, Wei J, Zhang L, Shi J N, Xu S, Yan G W, Du T M, Dou S J, Li L Y, Liu L J, Liu G Z. Establishment and application of RiceS-A300 for rice protein sample library., 2018, 51: 3625–3638 (in Chinese with English abstract).
[24] Agrawal G K, Jwa N S, Rakwal R. A novel rice (L.) acidicgene highly responsive to cut, phytohormones, and protein phosphatase inhibitors., 2000, 274: 157–165.
[25] 兰金苹. MAPK基因在介导的水稻白叶枯病抗性反应中的功能研究. 河北农业大学博士学位论文, 河北保定, 2015. Lan J P. Function of MAPK Gene inMediated Resistance to Bacterial Blight in Rice. PhD Dissertation of Hebei AgriculturalUniversity, Baoding, Hebei, China, 2015 (in Chinese with English abstract).
[26] Nishimura A, Aichi I, Matsuoka M. A protocol for agrobacterium-mediated transformation in rice., 2006, 1: 2796–2802.
[27] Duan Y B, Zhai C Y, Li H, Li J, Mei W Q, Gui H P, Ni D H, Song F S, Li L, Zhang W G, Yang J B. An efficient and high-throughput protocol for-mediated transformation based on phosphomannose isomerase positive selection in MeJA ponica rice (L.)., 2012, 31: 1611–1624.
[28] 刘巧泉, 张景六, 王宗阳, 洪孟民, 顾铭洪. 根癌农杆菌介导的水稻高效转化系统的建立. 植物生理学报, 1998, 24: 259–271. Liu Q Q, Zhang J L, Wang Z Y, Hong M M, Gu M H. Establishment of efficient transformation system of rice mediated by., 1998, 24: 259–271 (in Chinese).
[29] Dansana P K, Kothari K S, Vij S, Tyagi A K. OsiSAP1 overexpression improves water-deficit stress tolerance in transgenic rice by affecting expression of endogenous stress-related genes., 2014, 33: 1425–1440.
[30] Lou D, Wang H, Liang G, Yu D. OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice., 2017, 8: 993.
[31] Chang Y, Nguyen B H, Xie Y, Xiao Y, Tang N, Zhu W, Mou T, Xiong L. Co-overexpression of the constitutively active form of OsbZIP46 and ABA-activated protein kinase SAPK6 improves drought and temperature stress resistance in rice., 2017, 8: 1102.
[32] 刘国振, 刘斯奇, 吴琳,徐宁志. 基于抗体的水稻蛋白质组学——开端与展望. 中国科学: 生命科学, 2011, 41(3): 173–177.Liu G Z, Liu S Q, Wu L, Xu N Z. Antibody-based rice proteomics-beginning and prospect., 2011, 41(3): 173–177 (in Chinese).
[33] Bailey T A, Zhou X J, Chen J P, Yang Y NRole of ethylene, abscisic acid and MAP kinase pathways in rice blast resistance. In: Wang G L, Valent B, eds. Advances in Genetics, Genomics and Control of Rice Blast Disease.Springer, Dordrecht, 2009. pp 185–190.
[34] De V D, Yang Y, Cruz C V, Hofte M. Abscisic acid-induced resistance against the brown spot pathogenin rice involves MAP kinase-mediated repression of ethylene signaling., 2010, 152: 2036–2052.
[35] Fu S F, Chou W C, Huang D D, Huang H H. Transcriptional regulation of a rice mitogen-activated protein kinase gene,, in response to environmental stresses., 2002, 43: 958–963.
[36] Kurusu T, Yagala T, Miyao A, Miyao A, Hirochika H, Kuchitsu K. Identification of a putative voltage-gated Ca2+channel as a key regulator of elicitor-induced hypersensitive cell death and mitogen-activated protein kinase activation in rice., 2005, 42: 798–809.
[37] Finkelstein R, Reeves W, Ariizumi T, Steber C. Molecular aspects of seed dormancy., 2008, 59: 387–415.
[38] Kim J A, Agrawal G K, Rakwal R, Han K S, Kim K N, Yun C H, Heu S, Park S Y, Lee Y H, Jwaa N S. Molecular cloning and mRNA expression analysis of a novel rice (L.) MAPK kinase kinase, OsEDR1, an ortholog ofAt EDR1, reveal its role in defense/stress signalling pathways and development., 2003, 300: 868–876.
[39] Hoth S, Morgante M, Sanchez J P, Hanafey M K, Tingey S V, Chua N H. Genome-wide gene expression profiling inreveals new targets of abscisic acid and largely impaired gene regulation in themutant., 2002, 115: 4891–4900.
[40] Nemhauser J L, Hong F, Chory J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses., 2006, 126: 467–475.
[41] Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A , Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Shinozaki K Y, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K. Monitoring the expression pattern of around 7,000genes under ABA treatments using a full-length cDNA microarray., 2002, 2: 282–291.
[42] Finkelstein R R, Gampala S S, Rock C D. Abscisic acid signaling in seeds and seedlings., 2002, 14(S1): S15–S45.
[43] Hetherington A M. Guard cell signaling., 2001, 107: 711–714.
[44] Zhang A, Zhang J, Ye N, Cao J, Tan M, Zhang J H, Jiang M G. ZmMPK5 is required for the NADPH oxidase-mediated self-propagation of apoplastic H2O2in brassinosteroid-induced antioxidant defence in leaves of maize., 2010, 61: 4399–4411.
[45] Xing Y, Jia W S, Zhang J H. At MKK1 mediates ABA-induced CAT1 expression and H2O2production via At MPK6-coupled signaling in., 2008, 54: 440–451.
[46] Jammes F, Song C, Shin D, Munemasab S, Takedaa K, Gua D, Choa D, Leea S, Giordoa R, Sritubtimd S, Leonhardte N, Ellisd B E, Muratab Y, Kwaka J M. MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling., 2009, 106: 20520–20525.
[47] Zong X, Li D, Gu L. Abscisic acid and hydrogen peroxide induce a novel maize group C MAP kinase gene,, which is responsible for the removal of reactive oxygen species., 2009, 229: 485–495.
[48] Zhang S, Klessig D F. Salicylic acid activates a 48-kD MAP kinase in tobacco., 1997, 9: 809–824.
[49] Seo S, Katou S, Seto H, Gomi K, Ohashi Y. The mitogen-activated protein kinases WIPK and SIPK regulate the levels of MeJAsmonic and salicylic acids in wounded tobacco plants., 2007, 49: 899–909.
Overexpression of OsMPK17 protein enhances drought tolerance of rice
MA Jin-Jiao1, LAN Jin-Ping1,2, ZHANG Tong1, CHEN Yue1, GUO Ya-Lu1,3, LIU Yu-Qing1, YAN Gao-Wei1, WEI Jian1, DOU Shi-Juan1, YANG Ming1, LI Li-Yun1, and LIU Guo-Zhen1,*
1College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China;2Research Center for Life Sciences, Hebei North University, Zhangjiakou 075000, Hebei, China;3Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, Guangdong, China
Mitogen-activated protein kinase (MAPK) highly conserved in eukaryotes plays important roles in stress responses in plant. In this study, full-lengthgene was cloned and fusion protein was expressed. The purified protein was used as immunogen to generate monoclonal antibody. Western blot (WB) analyses were carried out for protein samples isolated from tissues under different abiotic stresses. The expression ofwas induced by drought stress, suggesting that the OsMPK17 protein may play a role in drought stress response. Proteins isolated from leaves treated with abscisic acid (ABA) or methylene jasminate acid (MeJA) demonstrated a decrease of OsMPK17 protein abundance, suggesting that hormones may be involved in the function of the protein. The overexpression vector of OsMPK17 protein was established and transformed into TP309 via-mediated protocol. Homozygous transgenic lines for overexpression of OsMPK17 protein were obtained. In the field planting experiment, the plant height and the spike length of transgenic lines shortened and the seed setting rate decreased. At seed germination stage, under the condition of PEG-6000 treatment, the seeds of overexpressed OsMPK17 protein lines grew better and the length of root and shoot was significantly longer than those of the wild type. At seedling stage, transgenic plants showed lower water loss rate when exposed in the air. The transgenic rice with overexpressed OsMPK17 protein grew better than the wild type in the experiment with soil drought stress and re-watering then. In conclusion, the overexpressed OsMPK17 protein enhances drought tolerance of rice. This study enhances the understanding for the function of OsMPK17 protein.
rice; MAPK protein; Western blot; stress; overexpression; antibody-based proteomics
2019-02-26;
2019-08-09;
2019-09-04.
10.3724/SP.J.1006.2020.92007
刘国振, E-mail: gzhliu@hebau.edu.cn
E-mail: majinjiao_mbb@126.com
本研究由国家自然科学基金项目(31171528)资助。
This study was supported by the National Natural Science Foundation of China (31171528).
URL: http://kns.cnki.net/kcms/detail/11.1809.S.20190903.1630.006.html