徐永红,陈力,唐松,丁德宽,杨宇衡
柑橘轮斑病的适生区预测及风险分析
徐永红1,陈力2,唐松3,丁德宽4,杨宇衡1
(1西南大学植物保护学院,重庆 400715;2重庆市万州区植物保护站,重庆 404000;3重庆市梁平区农业技术服务中心,重庆 405200;4城固县果业技术指导站,陕西城固 723200)
【】柑橘轮斑病(citrus target spot)作为一种新发柑橘病害,造成发病果园严重的经济损失。本研究针对该病害进行适生区预测及风险分析,以便对该病采取及时、有效的管控措施,最终达到降低其流行风险等级,防止病害传播扩展的目的。基于环境变量数据和柑橘轮斑病发生分布数据,运用Maxent生态位模型模拟预测柑橘轮斑病菌()在中国的潜在适生区分布。并通过ROC(receiver operating characteristic)曲线下面积(area under the curve,AUC)评估预测模型的精度,运用正规化训练增益刀切法(regularized training gain)获取气候因子与分布概率间的关系。同时采用有害生物风险分析理论,以有害生物风险分析的规定程序为依据探索柑橘轮斑病病害的风险分析体系和评价值的计算方法,对评价指标进行定性分析,进而量化评价值。在建立综合评价模型的基础上,计算柑橘轮斑病风险性危害值,最后对病害的风险性危害值进行评价。柑橘轮斑病菌MaxEnt模型预测结果的平均AUC值为0.998,表明预测结果精度高。柑橘轮斑病菌的潜在适生区面积约占全国面积12.19%,高适生区、中适生区、低适生区各占全国面积约2.85%、3.99%、5.35%。高、中适生区主要集中于长江中上游柑橘优势区及其周边。其中,高适生区主要集中在四川、重庆、陕西南部,以及贵州、湖北等少量地区。中、低适生区是高适生区的外围扩展。通过MaxEnt模型正规化训练增益刀切法获取的环境变量重要性分析结果表明,最冷季度平均温度(Bio11)、最干季度平均温度(Bio9)、最冷月最低温(Bio6)是影响柑橘轮斑病菌分布的3个关键环境因子,这意味着低温、干冷季节柑橘轮斑病发生可能性大。风险分析最终创建出5个准则层、13个指标层的多指标综合评价体系,并对各指标层定量与定性分析,柑橘轮斑病在我国的风险性危害值(值)为2.08,处于高度风险等级,对长江中上游及湖北西部-湖南西部两大柑橘产区的潜在危害最大。柑橘轮斑病风险性较高,需要尽快建立监测体系,针对病害采取有效控制措施,阻止病害在长江中上游柑橘优势区及相邻柑橘产区传播。
柑橘轮斑病;柑橘轮斑病菌;全国适生区等级划分;多指标综合评价方法;风险分析
【研究意义】我国不仅是柑橘主要的起源中心和世界柑橘资源的宝库,同时已经成为世界上第一大柑橘生产国[1-2]。与此同时,柑橘病害对我国柑橘产业造成的严重损失不容小视。柑橘轮斑病(citrus target spot)是2006年在我国陕西省城固县(107.3°E,33.2°N)柑橘产区发现的一种新发的低温性真菌病害,初次暴发便对温州蜜柑和金橘造成落叶和枯梢,甚至死亡,给当地柑橘产业带来严重的威胁[3]。自2018年12月中旬至2019年3月,重庆市万州区突然暴发该病,造成当地柠檬树大量感病,受害重的柠檬树几乎无花无果,少量挂果也干枯易落,损失严重。因此,分析柑橘轮斑病菌适生区,研究柑橘轮斑病发生风险,可及时监控病害,对减少该病害的发生和由此造成的经济损失具有重要意义。【前人研究进展】柑橘轮斑病是由病原真菌造成的毁灭性病害[4],在病害发生初始地陕西省城固县部分果园病害发生率达100%[5]。此后数年,该县柑橘园每到晚冬和早春大面积暴发柑橘轮斑病[6]。该病通常危害柑橘叶片、叶柄、嫩梢、枝干、茎、果实等形成轮纹状病斑。病情发展造成叶片凋落,枝干萎蔫,枝条干枯,木质部变色,甚至扩展至韧皮部,严重时造成整株枯死[7]。柑橘轮斑病通常在12月中旬开始出现症状,2月下旬至3月中旬达发病高峰,病叶在3月中下旬基本落光,之后导致枝干干枯同时造成大量落果,病情发展非常迅速。据万州区农业农村委不完全统计,截至3月下旬该病发生面积达596 hm2,其中重发区面积约10 hm2,严重威胁着当地的柑橘产业。以上信息表明,该病已经从我国柑橘种植的最北缘逐步向南扩展,未来极有可能流行至临近柑橘优势产区。但是,目前对于该病害的流行情况尚无相关报道。【本研究切入点】为更好地监控柑橘轮斑病的发展流行,防止病害继续扩展至其他地区,对柑橘轮斑病进行风险分析尤为重要。MaxEnt模型是物种地理尺度空间分布模型,可用于物种分布预测,以最大熵理论为基础,利用物种分布数据和环境变量,获取限制物种分布的环境变量和模拟物种分布的生态位[8-11]。基于MaxEnt模型预测柑橘轮斑病菌的适生区并对不同地区划分其适生等级,可以加强全国范围的病害监测,及时阻止病害扩展。参考多指标综合评价体系[12],对柑橘轮斑病进行定性、定量风险分析,确立风险等级,达到风险评价的目的。【拟解决的关键问题】通过MaxEnt模型预测柑橘轮斑病菌的适生区,同时采用多指标综合评价方法对柑橘轮斑病进行风险分析,确定该病的风险等级,为降低病害风险等级、有效防治和监测病害提供依据。
1.1.1 样本数据 图1为陕西城固、安康、重庆万州等发病地区当地果树及植保相关部门提供的2018—2019年柑橘轮斑病发病情况。发病地区种植数据信息来自陕西及重庆统计年鉴。
A:叶片病斑leaf spot;B:枝干病斑infected stem;C:木质部侵染infected xylem;D:果实病斑fruit spot;E:整株落叶all leaves fall。箭头所示为发病部位Arrows show the infected parts of citrus trees
1.1.2 环境数据 采取1950—2000年的19个生物气候变量(Bio1—Bio19)(表1),下载自世界气象数据库WorldClim(https://www.worldclim.org),版本为WorldClim Version 2,空间分辨率为10 min。
1.1.3 软件及模型 利用Maxent 3.3.3软件获取气候变量的贡献率,使用刀切法(Do jackknife to measure variable importance)分析各气候因子对病害适生影响的重要性,创建响应曲线(create response curves)获取各气候因子与分布概率的关系曲线,利用ROC(receiver operating characteristic)曲线下面积(area under the curve,AUC)评估模型预测结果的精度。根据模拟预测结果,建立MaxEnt模型并使用Arc-GIS10.2软件对预测结果重分类得到适生区预测范围。
1.2.1 柑橘轮斑病菌适生区预测 随机选取现有柑橘轮斑病分布点的地理位置数据和气候变量数据导入Maxent 3.3.3中,分析柑橘轮斑病菌与每个气候变量因子的相关性,得到最终模拟预测的结果。采用Arc-GIS10.2软件对Maxent 3.3.3软件预测结果进行掩膜提取(extract by mask)和栅格重分类(raster reclassify)分析,得到柑橘轮斑病菌在我国的适生范围。
1.2.2 柑橘轮斑病病害风险分析 柑橘轮斑病病害风险评估体系的建立:根据蒋青等[13]提出的多指标综合评价方法,结合柑橘轮斑病实际发生与危害情况,分析可能影响风险分析的因素。将风险指标划分为国内分布状况、潜在的危害性、受害栽培寄主的经济重要性、扩散的可能性、危险性管理的难度5个大的方面来进行风险分析,以对病害的定殖、传播、危害性、危险性管理进行综合性评价分析,最终得出13个指标的柑橘轮斑病病害多指标综合评价分析体系。
表1 气候数据变量名称及描述
柑橘轮斑病病害风险性分析指标评判标准的建立:本研究主要结合有害生物危险性的指标评判标准[14],对评价体系的指标进行评判,确定各指标赋值标准的柑橘轮斑病病害指标评判标准。
柑橘轮斑病的风险等级划分:病害风险等级划分依赖病害危险性值和外来有害生物风险评价等级划分标准。病害的国内分布状况(1)、潜在的危害性(2)、受害栽培寄主的经济重要性(3)、扩散的可能性(4)、危险性管理的难度(5)共同影响其危险性综合评价值[15],这些因素相互依存,共同决定危险性值,因此危险性综合评价值的计算公式为:
根据有害生物的危险等级标准,将综合风险值的大小分为4级[16]:值<0.5为低度风险,0.5—1.5为中度风险,1.5—2.5为高度风险,>2.5为极高风险。经综合评判公式计算柑橘轮斑病的综合风险值后,最终判定该病害的风险等级。
2.1.1 柑橘轮斑病菌国内适生区分布 基于MaxEnt模型预测结果,柑橘轮斑病菌在我国的适生区分布较集中,适生区面积约占全国面积12.19%。其中,高适生区、中适生区、低适生区各占全国面积约2.85%、3.99%、5.35%。高适生区主要集中在四川、重庆、陕西南部地区,以及贵州、湖北等少量地区。中适生区主要表现为高适生区的向外扩展,主要分布于贵州大部、湖北大部、四川东南局部地区、关中陕西南部以及云南的部分地区。低适生区是中适生区的外部扩展,主要包括河南大部、江苏大部、山东大部、安徽及山西、河北、湖南、云南等部分地区。高、中适生区主要集中于长江中上游柑橘优势区及其周边,湖北西部-湖南西部柑橘优势区的部分地区是柑橘轮斑病菌的中、低适生区(表2)。
表2 柑橘轮斑病在中国的潜在适生区
2.1.2 模型精度评价分析 MaxEnt模型运行时绘制出ROC曲线(图2),同时计算出模型精度评价指标AUC值。柑橘轮斑病菌MaxEnt模型预测结果的平均AUC值为0.998,预测精度远高于随机预测分布模型的AUC值0.5,可见柑橘轮斑病菌实际的分布区与预测得到的分布区拟合度较好。
2.1.3 环境变量重要性分析 采用MaxEnt模型正规化训练增益刀切法(regularized training gain)分析不同环境变量对柑橘轮斑病菌适生影响的差异(图3)。深蓝色条带表示该环境因子单独使用时具有的增益,条带对应的值越大代表该环境因子越重要。分析结果表明,最冷季度平均温度(Bio11)、最干季度平均温度(Bio9)、最冷月最低温(Bio6)是对柑橘轮斑病菌分布影响最大的3个环境因子,而其他环境变量相对影响较小。
2.2.1 柑橘轮斑病病害风险评估体系建立 根据多指标综合评价方法,结合柑橘轮斑病实际发生与危害情况,分析确定可能影响风险分析的因素,最终得到影响风险分析的指标,建立病害风险评估体系(图4)。
图2 MaxEnt模型对柑橘轮斑病菌预测结果的ROC曲线
图3 正规化训练增益的刀切结果
图4 柑橘轮斑病多指标综合评价体系
2.2.2 柑橘轮斑病病害风险性分析指标评判标准 根据多指标的综合评价分析体系,结合有害生物危险性的指标评判标准,确定指标的赋值标准的柑橘轮斑病病害指标评判标准(表3)。
2.2.3 柑橘轮斑病风险定性分析
(1)柑橘轮斑病国内分布情况的分析评估:柑橘轮斑病于陕西城固始发。一经发生,危害严重,因而被称为一种毁灭性病害。陕西安康、重庆万州柑橘产区也相继发生了柑橘轮斑病,严重阻碍柑橘产业的发展。
(2)潜在的危害性:目前柑橘轮斑病造成的产量损失较难统计,笔者用其危害程度来间接评价柑橘轮斑病潜在的经济危害性。柑橘轮斑病危害包括温州蜜柑、金柑、柠檬、脐橙、杂柑等不同柑橘品种的叶片、嫩梢和枝干果实等,造成树势衰弱。柑橘果实受危害初期形成病斑,后期果实腐烂,不可食用。枝干受到危害时枝条萎蔫甚至枝干枯死。严重时一些病株甚至整株枯死,足见其危害程度极大。加之柑橘幼苗及成年柑橘树都易感染柑橘轮斑病,可见危害柑橘的时期之长。同时,该病可危害多个柑橘品种。因此,柑橘轮斑病潜在危害性较为严重。
(3)受害栽培寄主的经济重要性:目前柑橘轮斑病在我国主要侵染柑橘,柑橘作为全球最重要的经济作物之一,既是中国乃至世界第一大水果,也是世界第三大贸易农产品[17]。朱丽认为柑橘轮斑病菌可能对苹果和梨存在潜在的危害风险[3]。苹果和梨作为我国的两大落叶果树,同样是推动我国区域经济发展、增加国民经济收入的支柱产业之一。若该病原菌危害苹果与梨,农民收入降低,该产业发展受到阻碍,我国的经济发展也将会受到限制。
(4)扩散的可能性:柑橘轮斑病自2006年发生于城固后,到目前2019年扩展至万州地区,病害从城固传播到安康、万州,可见其传播力较弱,可能与不同发病地区主栽柑橘品种的差异有关。柑橘轮斑病的远距离传播主要依靠其寄主柑橘苗木携带进行传播,因此对于一些已遭受柑橘轮斑病菌危害但还未表现症状的柑橘,检验检疫需要严密的鉴定程序,技术复杂,耗时较长,且不一定成功取到受害组织,检验难度较大,易导致柑橘轮斑病从发病地区传出而传入其他未发病地区。若不能及时发现并阻止病害的传播及扩散,当遇大量潜在携带柑橘轮斑病的柑橘作物时,更易导致病害传播蔓延,难以控制。
表3 柑橘轮斑病风险性定量分析评判指标赋分表
(5)危害性管理的难度:一方面,目前对于柑橘轮斑病常规的病原鉴定已有相应技术[5],但该技术复杂繁琐,耗时较长。另一方面,柑橘轮斑病作为一种毁灭性病害,其防治方案尚不成熟,现有药剂的田间防治效果不佳,仍需不断探索合理的防治措施。
2.2.4 柑橘轮斑病风险定量分析 通过定性分析及对指标赋分可以得到柑橘轮斑病风险性定量分析评判指标赋分表(表3)。根据公式计算危险性值必须先计算出一级指标值1、2、3、4、5,结合有害生物危险性评价的定量分析方法,这些指标值的计算结果如下[18]:
(1)国内分布状况1:由柑橘轮斑病风险性定量分析评判指标赋分表可知,1=2.00。
(2)潜在的危害性2:其二级指标与一级指标为叠加,一级指标潜在的危害性主要是由二级指标潜在的经济危害性决定,在此处对潜在的经济危害性赋予权重值0.7,对另一项赋值为0.3,2=0.7×21+0.3×22=2.10。
(3)受害栽培寄主的经济重要性3:二级指标的最大值为该项受害栽培寄主的经济重要性的指标值,3=Max(31,32,33)=3.00。
(5)危险性管理的难度5=(31+32+33)/3=2.33。
最终算得=2.08。参照评价标准,柑橘轮斑病风险等级属于高度危险。
MaxEnt和CLIMEX是目前使用最为广泛的两款用于创建物种分布的模型[19]。CLIMEX模型通过分析目标物种在已知发生地区的气候条件来模拟预测特定区域对目标物种的气候适应性,模型预测基于物种的生物学参数,如发育最高温度和有效积温等[20]。与CLIMEX模型不同,MaxEnt模型主要是根据物种分布数据和环境变量,分析环境因子与病害发生的相关性,根据环境因素限制条件模拟出潜在的适生区,预测未来可能会发生该病的地区[21]。MaxEnt模型使用范围无限制,广泛用于适生区研究,其预测结果较同类预测模型更精确。即便物种分布数据不全,仍能有效预测出合理的结果[21-24]。本研究通过MaxEnt模型分析得到影响柑橘轮斑病菌分布的重要气候因子有最冷季度平均温度(Bio11)、最干季度平均温度(Bio9)、最冷月最低温(Bio6)。病害发生分布除环境因素外,还存在人为、寄主、环境中的非气候因素[24],这些均为MaxEnt模型中难以把握的因素。运用MaxEnt模型对柑橘轮斑病菌适生区进行预测分析时,若不讨论以上3类非气候因素,可能会对预测出的适生区范围有所影响。
2003年,农业部对我国柑橘产区进行了优势区域布局规划,构建了长江中上游柑橘带、江西南部-湖南南部-广西北部柑橘带和浙江南部-福建西部-广东东部柑橘带以及一批特色柑橘生产基地(简称“三带一基地”)[25]。规划制定和发布实施以来,优势区域柑橘产业得到了快速发展。然而,病虫害监测及防治措施不到位依然是柑橘生产过程中的重要制约因素[5]。本研究结果表明,柑橘轮斑病高、中适生区主要集中环绕长江中上游柑橘优势区分布,中、低适生区占湖北西部-湖南西部柑橘优势区较大面积,此结果恰与我国两大柑橘主要优势区——长江中上游柑橘优势区和湖北西部-湖南西部柑橘优势区重叠,为优势产区柑橘产业的健康持续发展带来了严重隐患。
柑橘轮斑病从始发地陕西城固,再到陕南安康、重庆万州,一路由北方传播至南方并逐步向东部扩展,若继续按此方向传播,可能影响到长江中上游柑橘优势区和湖北西部-湖南西部柑橘优势区,对南部及东部的其他柑橘种植区亦造成威胁。柑橘轮斑病从首次发现开始,就不同于柑橘其他叶类病害发生在温暖和潮湿的季节,而是发生于寒冷的晚冬和早春[3,5,7]。这与本研究环境变量重要性分析结果完全一致,表明温度条件对柑橘轮斑病菌的分布影响较大,包括最冷季度平均温度、最干季度平均温度和最冷月最低温。可见一旦遇到冬季低温、干冷年份,柑橘轮斑病发生流行的概率将变大。
本研究采取多指标综合评价体系对柑橘轮斑病进行风险分析,为今后该病害的防治提供了依据。但风险分析是一个复杂而长期的工程[26-29],柑橘轮斑病发生危害原因复杂,潜在的危害因素等仍待发掘,需要不断地补充与完善。后续应不断收集信息,完善柑橘轮斑病风险评估体系,为该病害的绿色防控提供理论依据[30]。
通过多指标综合评价方法分析柑橘轮斑病的风险性,确定其风险等级属于高度危险,这意味着在适宜条件下柑橘轮斑病发生可能性大、潜在危害的可能性较大、发生时破坏力较大、传播风险较大及危害较强。我国作为柑橘的重要生产国家,柑橘种植面积广,一旦柑橘轮斑病发病面积扩大,造成的经济损失将不可估量。因此,应加强对柑橘轮斑病的重视,加强检验检疫与监控管理降低其传播,采取多种防治措施控制病害的发生发展。
[1] 郭文武, 叶俊丽, 邓秀新. 新中国果树科学研究70年——柑橘. 果树学报, 2019, 36(10): 1264-1272.
GUO W w, YE J l, DENG X x. Fruit scientific research in New China in the past 70 years:., 2019, 36(10): 1264-1272. (in Chinese)
[2] WU G A, TEROL J, IBANEZ V, LÓPEZ-GARCÍA A, PÉREZ-ROMÁN E, BORREDÁ C, DOMINGO C, TADEO F R, CARBONELL- CABALLERO J, ALONSO R, CURK F, DU D, OLLITRAULT P, ROOSE M L, DOPAZO J, GMITTER F G, ROKHSAR D S, TALON M. Genomics of the origin and evolution of., 2018, 554(7692): 311-316.
[3] 朱丽. 五种柑橘真菌性病害病原鉴定[D]. 杭州: 浙江大学, 2012.
ZHU L. Identification of five fungal pathogens causingdiseases in China[D]. Hangzhou: Zhejiang University, 2012. (in Chinese)
[4] CHEN C, VERKLEY G J M, SUN G Y, GROENEWALD J Z, CROUS P W. Redefining common endophytes and plant pathogens in,, and related genera., 2016, 120(11): 1291-1322.
[5] YANG Y, HU J, CHEN F, DING D, ZHOU C. Development of a SCAR marker-based diagnostic method for the detection of the citrus target spot pathogen., 2018, 2018: 7128903.
[6] ZHU L, WANG X H, HUANG F, ZHANG J Z, LI H Y, DING D K, HYDE K D. A destructive new disease of citrus in China caused bysp. nov., 2012, 96(6): 804-812.
[7] YANG Y, FANG A, YU Y, BI C, ZHOU C. Integrated transcriptomic and secretomic approaches reveal critical pathogenicity factors ininciting citrus target spot., 2019, 12(6): 1260-1273.
[8] Elith J, Phillips S J, Hastie T, Dudík M, Chee Y E, Yates C J. A statistical explanation of MaxEnt for ecologists., 2011, 17(1): 43-57.
[9] 朱耿平, 原雪姣, 范靖宇, 王梦琳. Maxent模型参数设置对其所模拟物种地理分布和生态位的影响——以茶翅蝽为例. 生物安全学报, 2018, 27(2): 118-123.
ZHU G P, YUAN X J, FAN J Y, WANG M L. Effects of model parameters in MaxEnt modeling of ecological niche and geographic distribution: case study of the brown marmorated stink bug,., 2018, 27(2): 118-123. (in Chinese)
[10] ABDELAAL M, FOIS M, FENU G, BACCHETTA G. Using MaxEnt modeling to predict the potential distribution of the endemic plantCrép. in Egypt., 2019, 50: 68-75.
[11] ZHANG J J, JIANG F, LI G Y, QIN W, LI S Q, GAO H M, CAI Z Y, LIN G H, ZHANG T Z. Maxent modeling for predicting the spatial distribution of three raptors in the Sanjiangyuan National Park, China., 2019, 9(11): 6643-6654.
[12] 马晓光, 沈佐锐. 植保有害生物风险分析理论体系的探讨. 植物检疫, 2003, 17(2): 70-74.
MA X G, SHEN Z R. A theoretical approach to the system of pest risk analysis in plant protection., 2003, 17(2): 70-74. (in Chinese)
[13] 蒋青, 梁忆冰, 王乃扬, 姚文国. 有害生物危险性评价的定量分析方法研究. 植物检疫, 1995, 9(4): 208-211.
JIANG Q, LIANG Y B, WANG N Y, YAO W G. Study on the quantitative analysis method for the risk assessment of harmful organisms., 1995, 9(4): 208-211. (in Chinese)
[14] 李娟, 赵宇翔, 陈小平, 阎合, 宋玉双. 林业有害生物风险分析指标体系及赋分标准的探讨. 中国森林病虫, 2013, 32(3): 10-15.
LI J, ZHAO Y X, CHEN X P, YAN H, SONG Y S. Discussion on the forest pest risk analysis index system and standard of natural endowments., 2013, 32(3): 10-15. (in Chinese)
[15] 梁小松, 徐刘平, 张呈伟, 陆苗, 李健. 改良的有害生物风险评价体系在定量评价检疫杂草风险中的应用. 杂草科学, 2014, 32(4): 45-48.
LIANG X S, XU L P, ZHANG C W, LU M, LI J. Application of an improved pest risk analysis (PRA) to quantitative evaluation of a risk of quarantine weeds., 2014, 32(4): 45-48. (in Chinese)
[16] 林司曦, 丁晓磊, 叶建仁, 赵琪. 李痘病毒在中国的入侵风险评估. 南京林业大学学报(自然科学版), 2016, 40(6): 187-192.
LIN S X, DING X L, YE J R, ZHAO Q. Invasion risk analysis of plum pox virus to China., 2016, 40(6): 187-192. (in Chinese)
[17] YANG M, LONG Q, LI W, WANG Z, HE X, WANG J, WANG X, XIONG H, GUO C, ZHANG G, LUO B, QIU J, CHEN X, ZHANG F, SHI X, ZHANG Y. Mapping the environmental cost of a typical citrus-producing county in China: hotspot and optimization., 2020, 12(5): 1827.
[18] 马平, 杜宇, 李正跃, 蒋小龙. 云南外来入侵有害生物多指标综合评价体系的建立. 植物保护, 2008, 34(3): 99-104.
MA P, DU Y, LI Z Y, JIANG X L. Establishment of comprehensive evaluation index system for invasive alien pests linked with plants and plant products in Yunnan., 2008, 34(3): 99-104. (in Chinese)
[19] BYEON D, JUNG S, LEE W H. Review of CLIMEX and MaxEnt for studying species distribution in South Korea., 2018, 11(3): 325-333.
[20] JUNG J M, LEE W H, JUNG S. Insect distribution in response to climate change based on a model: review of function and use of CLIMEX., 2016, 46(4): 223-235.
[21] PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions., 2006, 190(3/4): 231-259.
[22] PHILLIPS S J, DUDIK M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation., 2008, 31(2): 161-175.
[23] 王雨生, 王召海, 邢汉发, 厉静文, 孙硕. 基于MaxEnt模型的珙桐在中国潜在适生区预测. 生态学杂志, 2019, 38(4): 1230-1237.
WANG Y S, WANG Z H, XING H F, LI J W, SUN S. Prediction of potential suitable distribution ofBaill in China based on Maxent., 2019, 38(4): 1230-1237. (in Chinese)
[24] 林伟, 徐淼锋, 权永兵, 廖力, 高磊. 基于MaxEnt模型的草地贪夜蛾适生性分析. 植物检疫, 2019, 33(4): 69-73.
LIN W, XU M F, QUAN Y B, LIAO L, GAO L. Potential geographic distribution ofin China based on MaxEnt model., 2019, 33(4): 69-73. (in Chinese)
[25] 中国柑橘优势区域布局规划[2008-2015年]. 农业工程技术(农产品加工业), 2009(9): 11-13.
China citrus advantage regional planning (2008-2015).(), 2009(9): 11-13. (in Chinese)
[26] 覃振强, 吴建辉, 任顺祥, 万方浩. 外来入侵害虫新菠萝灰粉蚧在中国的风险性分析. 中国农业科学, 2010, 43(3): 626-631.
QIN Z Q, WU J H, REN S X, WAN F H. Risk analysis of the alien invasive gray pineapple mealybug (Beardsley) in China., 2010, 43(3): 626-631. (in Chinese)
[27] ANDREU J, VILA M. Risk analysis of potential invasive plants in Spain., 2010, 18(1): 34-44.
[28] 王跃栋, 刘自学, 苏爱莲. 草坪草病害风险性评估体系的初步建立及应用. 草业科学, 2012, 29(8): 1199-1205.
WANG Y D, LIU Z X, SU A L. Preliminary establishment and application of turfgrass disease risk assessment system., 2012, 29(8): 1199-1205. (in Chinese)
[29] LODGE D M, SIMONIN P W, BURGIEL S W, Keller R P, Bossenbroek J M, Jerde C L, Kramer A M, RutherfordE S, Barnes M A, Wittmann M E,. Risk analysis and bioeconomics of invasive species to inform policy and management., 2016, 41: 453-488.
[30] YANG Y, ZHANG T. Antimicrobial activities of tea polyphenol on phytopathogens: a review., 2019, 24(4): 816.
Prediction of suitable area and risk analysis for Citrus target spot
XU Yonghong1, CHEN Li2, TANG Song3, DING Dekuan4, YANG Yuheng1
(1College of Plant Protection, Southwest University, Chongqing 400715;2Wanzhou Plant Protection Station, Chongqing 404000;3Liangping Agricultural Technical Service Center, Chongqing 405200;4Chenggu Fruit Industry Technical Guidance Station, Chenggu 723200, Shaanxi)
【】Citrus target spot, a new disease reported in China, has caused serious economic losses in the local orchards. Therefore, it is necessary to carry out the prediction of the suitable area and risk analysis of the disease, so as to take timely and effective control measures for the disease, and finally achieve the purpose of reducing the risk level and preventing the spread of this disease.【】Combined the environmental data and the occurrence and distribution data of the disease areas, Maxent ecological niche models were used to predict the potential suitable area of citrus target spot pathogen () in China. The area under the curve (AUC) of receiver operating characteristic (ROC) was used to evaluate the accuracy of the prediction model, and the relationship between the climate factor and the distribution probability was obtained using the regularized training gain method. Additionally, the theory of pest risk analysis was used to explore the risk analysis system and calculation method of citrus target spot based on the prescribed procedures of pest risk analysis. Qualitative analysis of the evaluation indicators was conducted to quantify the evaluation values. Based on establishing a comprehensive evaluation model, the risk hazard value of citrus target spot was calculated, and finally the risk hazard value of the disease was evaluated.【】The average AUC value of the predicted result of MaxEnt model was 0.998, which indicated that the predicted result was highly accurate. The area of potential suitable areas foraccounts for 12.19% of the national area. Among them, the areas of high suitability, medium suitability, and low suitability account for about 2.85%, 3.99%, and 5.35% of the national area, respectively. The high and middle suitable areas are mainly concentrated in the citrus dominantarea in the upper and middle reaches of the Yangtze River. Among them, high suitable area is mainly concentrated in Sichuan, Chongqing, southern Shaanxi, and a few areas in Guizhou and Hubei. The middle and low suitable areas are the peripheral expansion of the high suitable area. The analysis results of the importance of environmental variables obtained by the MaxEnt model normalization training gain knife-cut method show that the mean temperature in the coldest quarter (Bio11), the mean temperature in the driest quarter (Bio9), and the minimum temperature of the coldest month (Bio6) are the key factors affecting the distribution of, which means that there is a high possibility of citrus target spot in low temperature and dry and cold seasons. The risk analysis finally created a multi-index comprehensive evaluation system of 5 criterion layers and 13 indicator layers, and quantitative and qualitative analyses of each indicator layer. The risk index value () of the disease was up to 2.08. This disease has the greatest potential harm to the two major citrus-producing areas in the Yangtze River Basin and in western Hubei and western Hunan.【】In view of the high risk of citrus target spot, it is necessary to establish a monitoring system as soon as possible, and take effective control measures against the disease to prevent the spread between the citrus dominant area and adjacent citrus-producing areas in the upper and middle reaches of the Yangtze River.
citrus target spot;; national classification of suitable grades; multi-index comprehensive evaluation method; risk analysis
10.3864/j.issn.0578-1752.2020.21.011
2020-03-19;
2020-04-22
国家重点研发计划(2018YFD0200500)、重庆市博士后科研项目特别资助(Xm2016124)
徐永红,E-mail:1506262894@qq.com。通信作者杨宇衡,E-mail:yyh023@swu.edu.cn
(责任编辑 岳梅)