郑福丽,刘苹,李国生,张柏松,李燕,魏建林,谭德水
有机-无机肥协同调控小麦-玉米两熟作物产量及土壤培肥效应
郑福丽,刘苹,李国生,张柏松,李燕,魏建林,谭德水
(山东省农业科学院农业资源与环境研究所/农业农村部废弃物基质化利用重点实验室/山东省植物营养与肥料重点实验室,济南 250100)
【】在小麦-玉米两季秸秆全还田条件下,探索不同有机-无机运筹模式对作物产量、氮效率和土壤养分的影响,为小麦-玉米一年两季种植合理利用有机养分资源和科学培肥地力提供理论支撑。通过设计化肥与不同用量有机肥配合并结合施用秸秆腐熟剂措施,研究不同有机无机运筹模式对产量构成、氮养分吸收、土壤有机质及团聚体等特征的影响。试验共设6个处理,分别为F处理(单施化肥),FA处理(化肥配秸秆腐熟剂),FM1处理(化肥配1 500 kg·hm-2有机肥),FM2处理(化肥配3 000 kg·hm-2有机肥),FM3处理(化肥配4 500 kg·hm-2有机肥),FAM2处理(化肥配3 000 kg·hm-2有机肥和秸秆腐熟剂)。(1)与单施化肥相比,施用不同用量有机肥和秸秆腐熟剂均可显著增加小麦-玉米籽粒产量,其中FM3处理产量最高,小麦增产20.6%,玉米增产10.6%,FAM2处理小麦增产19.5%,玉米增产8.2%。产量增加源于产量各构成要素的协同提高,小麦以公顷穗数和穗粒数增加较为显著,玉米以行粒数增加最为显著。(2)增施有机肥和秸秆腐熟剂可以促进氮素向籽粒运移,提高氮素收获指数,随有机肥用量增加,小麦和玉米氮素积累量均增加,其中FM3处理和FAM2处理籽粒氮素累积量和收获指数均较高,与F处理达显著差异。配合施用秸秆腐熟剂的FA和FAM2处理较不施菌剂处理周年氮肥偏生产力提高了1.3—1.6 kg·kg-1。(3)增施有机肥和施用秸秆腐熟剂显著增加土壤全氮、碱解氮和有机质含量,其中FM3处理土壤全氮和有机质含量最高,施用2年后相比F处理全氮增加0.17 g·kg-1,有机质增加1.97 g·kg-1。各有机无机配施模式显著降低土壤容重、提高孔隙度和水稳性团聚体比例。连续2年试验表明,增施有机肥、配施秸秆腐熟剂可以增加小麦-玉米产量,促进籽粒氮素吸收和转运,改善土壤结构和培肥地力,推荐FAM2处理作为本地区小麦-玉米轮作模式下有效的增产及土壤培肥技术模式。
有机无机协同;秸秆腐熟剂;产量;氮素效率;土壤肥力
【研究意义】土壤肥力是农业可持续发展的基础资源,土壤培肥是建立科学施肥制度的重要内容[1-2]。有机肥投入是一项重要的土壤培肥措施,中国畜禽有机肥及秸秆资源丰富,每年排放2.7×109t 畜禽粪便,其中仅有40%被处理或利用[3];中国主要粮食作物秸秆年平均产量为4.9×108t,粮食秸秆露天焚烧量平均为0.98×108t,约占粮食作物秸秆总量的19%[4]。合理有效利用有机废弃物养分,可以大大降低化肥的施用量。从保护环境、提高土壤肥力、资源充分利用等各方面考虑,有机无机配施是实现土壤可持续利用的科学施肥方式。【前人研究进展】有机无机肥配施具有培肥土壤、防止土壤酸化和盐渍化、提高产量、消纳有机排泄物、保护环境和节约资源等诸多积极作用[5-12]。Yadav等[8]和Manna等[9]研究表明,有机无机肥配施对作物的增产效果显著高于氮、磷、钾化肥处理。有机无机肥配施有利于作物稳产高产,提高土壤肥力和提高氮肥的利用率;有利于农业废弃物资源的综合利用。蔡泽江[13]和徐明岗等[14]研究表明,施用有机肥减少化肥用量,可以增加玉米、水稻产量和肥料利用率,还可以培肥土壤。张娟等[15]对小麦的研究表明,秸秆预处理后可以改善土壤环境,增加小麦产量。【本研究切入点】关于有机无机肥料配施的肥效研究多关注于当季作物,对后茬作物或者综合评价周年种植体系的研究较少,有机肥与秸秆配合施用的研究更少。秸秆腐熟剂能使秸秆等有机废弃物快速腐熟,释放秸秆中磷、钾等元素,产生大量有益微生物。在秸秆还田条件下,如何利用秸秆腐熟剂加速秸秆养分释放,同时配合有机肥施用来改善土壤条件、提高土壤肥力、增加作物产量日趋重要。但有机肥的适宜用量及与秸秆腐熟剂配施的应用效果因地而异,其作用机制还需要进一步研究探明。【拟解决的关键问题】本研究在小麦玉米秸秆还田条件下,在山东半岛丘陵地区设置不同有机肥和秸秆腐熟剂与化肥的协同运筹模式,研究不同模式对作物产量和土壤肥力的影响,筛选出适合该地区的最佳养分管理方式,为本地区小麦-玉米轮作增产和建立合理的培肥模式提供技术支撑。
试验地设在山东省安丘市辉渠镇夏坡村,118°44′—119°27′E,36°05′—36°38′N,地处山东半岛的中部,属暖温带大陆性季风气候,常年平均降水量646.3 mm,平均气温12.2℃,平均光照2 502.1 h。试验地土壤类型为砂质棕壤,土壤偏酸性,为旱地丘陵非水浇地。0—30 cm土壤基本理化性状为土壤全氮0.99 g·kg-1、水解性氮65.3 mg·kg-1、有效磷10.8 mg·kg-1、速效钾93.0 mg·kg-1、有机质12.59 g·kg-1、pH 5.75,容重1.43 g·cm-3、孔隙度44.6%。
本试验种植制度为小麦-玉米周年轮作,于2017年10月开始,2019年10月结束,连续进行2年。试验设置6个处理,3个重复,随机区组排列,共计18个小区,小区面积50 m2(表1)。所施有机肥为腐熟鸡粪,主要养分含量为N 2.17%、P2O51.48%、K2O 2.35%、有机质45.78%、pH 8.05,有机肥全部于小麦季作为底肥一次性施入,玉米季不再施有机肥。秸秆腐熟剂为河南省沃宝生物科技有限公司生产,有效活菌数100亿/g,产品含芽孢杆菌、霉菌等有益菌株,分解秸秆中的纤维素、木质素、半纤维素。玉米秸秆还田量在9 000 kg·hm-2左右,玉米秸秆粉碎还田后有机肥均匀撒施在试验小区,腐熟剂拌土后撒施在试验小区,结合深耕翻地,使有机肥、菌剂、土壤和秸秆混合更均匀。小麦分别于2017年10月10日和2018年10月12日播种,品种为济麦22,播种量为225 kg·hm-2,播种基施复合肥(15-15-15) 750 kg·hm-2,拔节追施225 kg·hm-2尿素,分别于2018年6月8日和2019年6月10日收获。小麦收获后,秸秆全部粉碎还田,秸秆还田量在7 500 kg·hm-2左右,秸秆腐熟剂拌土后撒施在试验小区秸秆表面,玉米品种为奥原8号,分别于2018年6月15日和2019年6月18日播种,行距75 cm,株距30 cm,分别于2018年10月4号和2019年10月5号收获。玉米季统一施肥,播种施肥开沟一次性进行,基施缓控释肥料(26-6-8)750 kg·hm-2,生育后期不追肥。大田试验按正常田间管理措施进行。
表1 试验设计
有机肥量为有机肥的实物用量。本试验按照常规施肥习惯,在统一施用等量化肥和秸秆全部还田的基础上,设计不同的有机肥和秸秆腐熟剂调控措施,所有处理化肥用量和秸秆用量相同,未统计秸秆养分影响
The organic fertilizer amount refers to the actual amount of organic fertilizer, on the basis of applying the same amount of chemical fertilizer and returning the straw to the field, different regulation measures of organic fertilizer and straw spoilage agent were designed; all treatments used the same amount of fertilizer and straw, no statistical effect of straw nutrient was made
种植前和小麦玉米收获后分别取0—30 cm土壤,用于测定土壤的理化性状指标;环刀取土壤样品,用于测定土壤容重和土壤孔隙度[16]。
小麦收获时每个小区收取3个样方,每个样方1 m2。贴地表收获,进行小麦考种,统计穗数、小穗数、穗粒数和千粒重,然后将小麦分成叶片、籽粒和其他3个部分,分别测定干物质量和氮含量;玉米收获时每个小区连续收取双行20穗,风干籽粒后考种,统计穗长、穗粗、穗行数、行粒数和千粒重。取10个代表性植株,按照叶片、籽粒和其他3个部分分开,105℃杀青30 min后,80℃烘干至恒重,测定干物质量和氮含量。小麦和玉米小区全部收获计算产量。植株氮含量测定方法参考土壤农化分析方法[16]。根据文献[17],计算方法如下:
氮素积累量(kg·hm-2)=籽粒或秸秆产量×籽粒或秸秆含氮量;
氮收获指数(%)=籽粒吸氮量/地上部总吸氮量×100;
肥料氮偏生产力NPFP(kg·kg-1)=Y/F。
式中,Y指作物产量,kg·hm-2;F指氮肥投入量,kg·hm-2;NPFP指投入单位氮肥(包括化肥氮和有机肥氮)所生产的作物产量。
利用Microsoft Excel 2016进行数据预处理,采用DPS18.10软件进行统计方差分析。
化肥基础上增施有机肥和秸秆腐熟剂可显著提高小麦籽粒产量,其中FM3处理和FAM2处理产量均显著高于其他4个处理,较F处理增产18%(2018)和22%(2019)。小麦季增施有机肥,对玉米也有一定的增产效果,但是增产幅度不如小麦明显,随有机肥用量增加玉米产量也增加,其中FM3处理的产量与其他5个处理产量达显著差异,较F处理增产8.8%(2018)和12.4%(2019)。连续施用2年有机肥的小麦玉米产量比施用1年有机肥的产量可以提高3%—4%。通过FA和F处理可知,施用秸秆腐熟剂比不施秸秆腐熟剂,小麦和玉米产量可以提高3个百分点左右(表2)。
有机肥和秸秆腐熟剂应用对小麦玉米产量构成要素均有促进作用,小麦季FM3处理公顷穗数和FAM2处理穗粒数、小穗数均与F处理达显著差异;施用秸秆腐熟剂的FA和FAM2处理的玉米穗行数最高,FM1处理的玉米行粒数和穗长最高,与F处理差异显著,FAM2处理的玉米穗粗最高,与F处理显著差异(表3)。
通过对2年小麦玉米氮素积累分析可知(表4),小麦玉米地上部的氮素主要集中在籽粒部分,茎叶中占比很少,化肥基础上增施有机肥和秸秆腐熟剂可以促进氮素向籽粒的运移。随有机肥用量增加,小麦氮素收获指数增加,小麦氮素向籽粒运移增加,籽粒氮素积累量增大,其中FM3处理小麦氮素收获指数最高,小麦籽粒氮素积累量最大,与其他处理差异显著。FM3处理的玉米籽粒氮素积累量最大,与F处理差异显著。
不同的有机无机协同模式对氮素在小麦-玉米中的积累影响不同,小麦季FAM2处理的小麦茎叶中氮素积累最高,玉米季FM3处理的玉米茎叶中氮素积累最高,玉米季各处理对氮素收获指数影响不大。
从FM1、FM2、FM3处理可知,随有机肥用量增加,肥料总氮量增加,氮肥偏生产力下降,FM3处理有机肥投入最多,氮肥偏生产力最低,与F处理差异显著,2018年比F处理降低了3.0 kg·kg-1,2019年降低了1.9 kg·kg-1。连续施用有机肥,氮肥偏生产力增加,2019年氮肥偏生产力比2018年提高了1.5 kg·kg-1。
表2 小麦-玉米产量分析
同列不同小写字母表示在0.05水平差异显著。下同
Values followed by different small letters within a column are significantly different at 0.05 level. The same as below
表3 不同有机无机协同模式下小麦-玉米产量构成要素分析
表4 小麦玉米不同部位氮素积累分布
由FA和F处理以及FAM2和FM2处理对比可知,秸秆腐熟剂的施用可以提高氮肥偏生产力1.3—1.6 kg·kg-1(表5)。
表5 小麦-玉米周年氮肥偏生产力
有机肥氮指有机肥中含有的氮,本试验未考虑秸秆中有机氮的矿化
Organic fertilizer nitrogen refers to the nitrogen contained in organic fertilizer, the mineralization of organic nitrogen in straw was not considered in this experiment
连续2年试验结果表明,不同有机无机协同模式均可以提升土壤中全氮、碱解氮和有机质的含量。随有机肥用量增加,土壤全氮、有机质和土壤碱解氮含量增加明显,土壤容重降低,土壤孔隙度增加,水稳性团聚体占比增加,而腐熟剂的配合施用起到了很好的促进作用(表6)。
连续施用有机肥和菌剂2年后,土壤全氮和有机质比2017年种植前分别提高了10.3%—24.2%和3.5%—18.1%,其中FM3处理土壤全氮和有机质含量最高,与F处理和种植前土壤相比,差异均达显著水平。FM2、FM3和FAM2处理碱解氮含量较高,均比种植前土壤提高107%左右,比F处理提高15%左右。FAM2处理中,土壤容重最低,土壤孔隙度和水稳性团聚体最高,与F处理达差异显著,比种植前土壤容重降低8.2%,孔隙度提高17.1%,水稳性大团聚体增加30.4%。
从表7可知,随有机肥用量和菌剂增加,投入成本增加,但是周年小麦玉米产量也增加,总收入增加,农民净收益增加。单独施用菌剂,小麦-玉米周年净收益可增加549元/hm2;施用有机肥1 500—3 000 kg·hm2模式,农民净收益增加1 366—1 506元/hm2,FM3施肥模式,可使农户每年净收益增加2 720元/hm2,FAM2有机肥和菌剂混合施用模式,农户每年净收益增加2 425元/hm2。
谢军等[17]8年玉米-蔬菜轮作定位试验表明,在等氮量条件下,有机无机配施与纯化肥或纯有机肥相比可显著提高玉米产量,促进氮素吸收,高洪军等[18]研究表明,有机氮替代部分化肥氮在黑土地上玉米增产效果较显著。本试验研究发现,化肥基础上增施有机肥对小麦玉米产量及构成因子均起到一定的促进作用,FM3处理和3 000 kg·hm-2有机肥配施秸秆腐熟剂的FAM2处理小麦比单施化肥增产18%—20%,玉米季有机肥后效明显,玉米仍可增产8%—10%,连续施用第二年比第一年小麦玉米产量可以提高3—4个百分点。唐湘文等[19]研究表明在中低产田,增施有机肥可以很好地提高作物产量,同时秸秆腐熟剂的配合施用也可以很好地增加作物产量。大量研究也证明了有机无机的配合施用以及秸秆腐熟剂的施用均可以显著提高氮素效率,增加作物产量[13,19-24]。如胡诚等[23]研究结果表明,在早晚稻上秸秆还田配施秸秆腐熟剂增加了稻谷的产量,比单施化肥最多增产1 423.2 kg·hm-2,增幅为23.5%。刘元东等[24]研究表明,添加秸秆腐熟剂后可使玉米秸秆提前30 d腐熟,且下轮小麦生长旺盛,分蘖和千粒重增加,小麦产量提高。
表6 玉米收获后土壤理化性状(2019)
表7 周年经济效益评价
价格核算按小麦2 240元/t、玉米1 900元/t、有机肥600元/t、菌剂20 000元/t计算。上表中“总收入”指2年小麦玉米的平均收入(不考虑成本),由于各处理施化肥、播种管理、收获等成本都是相同的,故此未做统计。“人工成本”仅指增施有机肥和菌剂带来的人工成本。“增加收益”是指扣除有机肥和秸秆腐熟剂及人工成本后比单施化肥模式增加的收入
Price: wheat 2 240 yuan/t, maize 1 900 yuan/t, organic fertilizer 600 yuan/t, inoculants 20 000 yuan/t. The “gross income” in the above table refers to the average wheat and corn income in two years regardless of cost. Since the costs of fertilizer application, sowing, management and harvest are the same for each treatment, no statistics are made. The “labor costs” in the above table refer only to the labor costs resulting from the application of organic fertilizers and bacteriological agents. “Net income” refers to the income increased after deducting organic fertilizers and straw spoilage agents and labor costs compared with the model of single fertilizer application
高洪军等[25]研究表明,等氮条件下长期适宜的有机无机配施不仅能有效调节春玉米氮素积累和转运,还能提高氮肥利用效率。王小明等[26]的研究结果显示,有机无机施氮模式能提高冬小麦和夏玉米籽粒产量,同时还能够提高氮肥偏生产力和氮肥农学效率。本试验2年研究结果表明,FM3处理以及FAM2处理可以更好地提高作物对氮素的吸收,与单施化肥相比,FM3处理的小麦、玉米籽粒氮素积累量分别提高了28.7%和19.7%,FAM2处理的小麦、玉米籽粒氮素积累量分别提高了21.8%和17.9%,说明施用有机肥和秸秆腐熟剂促进了氮素向籽粒的转移,提高了氮素的利用效率,进而提高了作物产量。秸秆腐熟剂的施用比不施菌剂的处理氮肥偏生产力提高了1.3—1.6 kg·kg-1,其原因可能是由于秸秆腐熟剂促进了秸秆的腐解进程,改善了土壤的氮素及其他元素的供应,进而作物产量得以提升。受土壤地力水平和作物品种的影响,本试验作物产量偏低,整体氮肥偏生产力偏低,并且在不减少化肥氮的基础上增加有机肥氮,整体氮肥投入量偏大,导致氮肥偏生产力低于单施化肥处理,在增施有机肥氮的同时减少化肥氮的投入,应该可以更好地提高氮肥效率和氮肥偏生产力,促进作物对氮素的吸收和运移,同时维持或提高作物产量,达到减肥增效的效果。
相关研究证实,有机无机肥料配施之所以与单施化肥相比能提高作物产量,主要是有机无机肥料配施能改善土壤氮素供应过程,使土壤养分平稳释放,提高土壤有机质尤其是活性有机质含量,土壤有机碳累积量增加[18,27-29]。李燕青等[30]一年小麦玉米试验发现,施用鸡粪、猪粪处理土壤表层有效磷含量分别是单施化肥处理的5.82和7.06倍。陈贵等[31]研究表明牛粪处理和猪粪处理的土壤有机质、全氮、有效磷、速效钾含量均有不同程度提升。本研究发现,土壤全氮、有机质和碱解氮含量均与有机肥用量成正比,连续2年试验后FM3处理的土壤全氮、有机质和碱解氮含量比单施化肥处理分别提高了16.9%、15.0%和13.9%,比种植前提高了25.3%、18.1%和106.6%。
在农学上通常以直径为10—0.25 mm水稳性团聚体含量判别土壤结构的好坏,其含量多表示结构好[32],并据此判断某种耕作措施的改良效果,因为这种团聚体具有协调土壤保水、透气和调节水热状况的作用。本试验发现有机肥的施用在一定程度上降低了土壤容重,增加了土壤孔隙度,提高了水稳性团聚体的占比,而且有机肥用量越大效果越明显,连续施用2年后,与单施化肥处理相比,FM3处理容重降低3.8%,土壤孔隙度提高12.5%,水稳性团聚体占比提高18.3%,证明了有机肥具有良好的改土培肥的作用。魏宇轩等[33]研究发现有机肥配施化肥显著增加了土壤有机碳、胡敏酸碳(HAC)和胡敏素碳(HUC)含量,增加了不同粒级团聚体中有机碳和腐殖质碳含量。王兴祥等[34]研究发现,施用有机肥更有利于大团聚体含量的增加,这与本研究相一致。高量有机肥可以明显提高土壤的全氮和有机碳含量,增加土壤速效氮磷钾含量,改善土壤的物理结构,提高土壤肥力,进而促进了作物对土壤养分的吸收,提高作物产量。
秸秆腐熟剂是由一群能将秸秆加速降解的微生物组成的菌剂,主要包括真菌、细菌和放线菌。腐熟剂利用这些微生物的分解代谢作用将秸秆中的纤维素、半纤维素和木质素等成分转化为富含营养元素的简单化合物,使秸秆降解为腐殖质物质,进而增加土壤肥力[35]。艾天成等[36]认为秸秆在改良土壤密度、硬度等土壤结构方面有显著效果,而饼肥、猪粪能提高土壤有机质含量。胡诚等[22]研究结果表明,秸秆还田配施秸秆腐熟剂提高了土壤有机质、全氮、碱解氮、有效磷、速效钾含量及阳离子交换量,降低了土壤容重,秸秆还田提高了大于0. 25 mm风干团聚体、水稳性大团聚体含量。本研究发现,秸秆腐熟剂配合有机肥施用比单施秸秆腐熟剂效果更好,与单施化肥相比,秸秆腐熟剂和有机肥配施的FAM2处理周年土壤全氮提高12.3%,有机质提高6.4%,土壤碱解氮含量提高15.3%。在改善土壤物理性状方面,菌剂和3 000 kg·hm-2有机肥配合施用FAM2处理比单独施用4 500 kg·hm-2有机肥FM3处理效果更明显,比种植前容重降低5.2%,孔隙度提高14.2%,水稳性大团聚体增加29.5%。这与前人的研究结果基本一致。众多的研究表明了秸秆腐熟剂增产的机理正是添加了秸秆腐熟剂之后可以加速秸秆的腐解,增加土壤有机质,降低土壤容重,从而改善了土壤物理化学性质,促进了秸秆和土壤中有效养分的释放,促进作物对养分的吸收,因此作物产量得以提高。
化肥基础上增施有机肥或配施秸秆腐熟剂均可显著增加小麦和玉米产量,其中化肥配施4 500 kg·hm-2有机肥的FM3模式产量最高,小麦产量增幅高于玉米,施用3 000 kg·hm-2有机肥配合15 kg·hm-2秸秆腐熟剂的FAM2模式产量略低于FM3模式。3 000 kg·hm-2有机肥配合秸秆腐熟剂模式下综合提升土壤质量效果较优。FM3模式和FAM2模式均可显著增加农民收益,推荐施用3 000 kg·hm-2有机肥结合15 kg·hm-2秸秆腐熟剂为鲁东丘陵旱地小麦-玉米生产适宜的增产培肥技术模式。
[1] 赵秉强. 施肥制度与土壤可持续利用. 北京: 科学出版社, 2012, 451-455.
Zhao B Q.. Beijing: Science Press, 2012, 451-455. (in Chinese)
[2] 黄东风, 王利民, 李卫华, 邱少煊. 培肥措施培肥土壤的效果与机理研究进展. 中国生态农业学报, 2014, 22(2): 127-135.
HUANG D F, WANG L M, LI W H, QIU S X. Research progress on the effect and mechanism of fertilization measure on soil fertility., 2014, 22(2): 127-135. (in Chinese)
[3] 全国农业技术推广服务中心. 中国有机肥料资源. 北京: 中国农业出版社. 1999.
National Agro-Tech Extension and Service Center.. Beijing: China Agriculture Press, 1999. (in Chinese)
[4] 赵建宁, 张贵龙, 杨殿林. 中国粮食作物秸秆焚烧释放碳量的估算. 农业环境科学学报, 2011, 30(4): 812-816.
ZHAO J N, ZHANG G L, YANG D L. Estimation of carbon emission from burning of grain crop residues in China., 2011, 30(4): 812-816. (in Chinese)
[5] 朱兆良, 孙波, 杨林章, 张林秀. 我国农业面源污染的控制政策和措施. 科技导报, 2005, 23(4): 47-51.
ZHU Z L, SUN B, YANG L Z, ZHANG L X. Policy and countermeasures to control non-point pollution of agriculture in China., 2005, 23(4): 47-51. (in Chinese)
[6] 孟琳, 张小莉, 蒋小芳, 王秋君, 黄启为, 徐阳春, 杨兴明, 沈其荣. 有机肥料氮替代部分化肥氮对稻谷产量的影响及替代率. 中国农业科学, 2009, 42(2): 532-542.
MENG L, ZHANG X L, JIANG X F, WANG Q J, HUANG Q W, XU Y C, YANG X M, SHEN Q R. Effects of partial mineral nitrogen substitution by organic fertilizer nitrogen on the yields of rice grains and their proper substitution rate., 2009, 42(2): 532-542. (in Chinese)
[7] 林治安, 赵秉强, 袁亮, HWAT B S. 长期定位施肥对土壤养分与作物产量的影响. 中国农业科学, 2009, 42(8): 2809-2819.
LIN Z A, ZHAO B Q, YUAN L, HWAT B S. Effects of organic manure and fertilizers long-term located application on soil fertility and crop yield., 2009, 42(8): 2809-2819. (in Chinese)
[8] YADAV R L, DWIVEDI V S, PRASAD K, TOMAR O K, SHURPALI N J, PANDEY P S. Yields trends, and changes in soil organic-C and available NPK in a long-term rice-wheat system under integrated use of manures and fertilizers., 2000, 68(3): 219-246.
[9] MANNA M C, SWARUP A, WANIHARI R H, RAVANKAR H N, SAHA M N, SINGH Y V, SAHI D K, SARAP P A. Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under sub-humid and semi-arid tropical India., 2004, 93(2): 264-280.
[10] GHOSH P K, RAMESH P, BANDYOPADHYAY K K, TRIPATHI A K, HATI K M, MISRA A K, ACHARYA C L. Comparative effectiveness of cattle manure, poultry manure, phosphor compost and fertilizer-NPK on three cropping systems in vert soils of semi-arid tropics. I. Crop yields and system performance., 2004, 95(1): 77-83.
[11] LIN Z A, CHANG X H, WANG D M, ZAHO G C, ZHAO B Q. Long-term fertilization effects on processing quality of wheat grain in the North China Plain., 2015, 174: 55-60.
[12] CAI Z C, QIN S W. Dynamics of crop yields and soil organic carbon in a long-term fertilization experiment in the Huang-Huai-Hai Plain of China., 2006, 136(3): 708-715.
[13] 蔡泽江, 孙楠, 王伯仁, 徐明岗, 黄晶, 张会民. 长期施肥对红壤pH、作物产量及氮、磷、钾养分吸收的影响. 植物营养与肥料学报, 2011, 17(1): 71-78.
CAI Z J, SUN N, WANG B R, XU M G, HUANG J, ZHANG H M. Effects of long-term fertilization on pH of red soil, crop yield sand uptakes of nitrogen, phosphorous and potassium., 2011, 17(1): 71-78. (in Chinese)
[14] 徐明岗, 李冬初, 李菊梅, 秦道珠, 八木一行, 宝川靖和. 化肥有机肥配施对水稻养分吸收和产量的影响. 中国农业科学, 2008, 41(10): 3133-3139.
XU M G, LI D C, LI J M, QIN D Z, KAZUYUKI Y, YASUKAZU H. Effects of organic manure application combined with chemical fertilizers on nutrients absorption and yield of rice in Hunan of China., 2008, 41(10): 3133-3139. (in Chinese)
[15] 张娟, 沈其荣, 张亚丽, 曹金留, 冉炜, 褚贵新. 施用预处理秸秆的土壤供氮特征及冬小麦吸收的影响. 植物营养与肥料学报, 2004, 10(1): 24-28.
ZHANG J, SHEN Q R, ZHANG Y L CAO J L, RAN W, CHU G X. Effects of application of pretreated rice straw on soil nitrogen supply and nitrogen uptake by winter wheat., 2004, 10(1): 24-28. (in Chinese)
[16] 鲁如坤. 土壤农化分析. 北京: 中国农业科技出版社, 1999: 12, 89, 150, 180, 194, 266, 309.
LU R K.. Beijing: Agriculture and Science Press, 1999: 12, 89, 150, 180, 194, 266, 309. (in Chinese)
[17] 谢军, 赵亚南, 陈轩敬, 李丹萍, 徐春丽, 王珂, 张跃强, 石孝均. 有机肥氮替代化肥氮提高玉米产量和氮素吸收利用效率. 中国农业科学, 2016, 49(20): 3934-3943.
XIE J, ZHAO Y N, CHEN X J, LI D P, XU C L, WANG K, ZHANG Y Q, SHI X J. Nitrogen of organic manure replacing chemical nitrogenous fertilizer improve maize yield and nitrogen uptake and utilization efficiency., 2016, 49(20): 3934-3943. (in Chinese)
[18] 高洪军, 彭畅, 张秀芝, 李强, 朱平. 长期施肥对黑土活性有机质、pH 值和玉米产量的影响. 玉米科学, 2014, 22(3): 126-131.
GAO H J, PENG C, ZHANG X Z, LI Q, ZHU P. Effects of long-term fertilization on maize yield, active organic matter and pH value of black soil., 2014, 22(3): 126-131. (in Chinese)
[19 ] 唐湘文, 黄晶, 王伯仁. 有机肥料用量对低产稻田土壤养分和水稻产量的影响. 湖南农业科学, 2017(9): 33-36.
TANG X W, HUANG J, WANG B R. Effects of organic fertilizer amount on soil nutrients and rice yield in low yield paddy fields., 2017(9): 33-36. (in Chinese)
[20] SHISANYA C A, MUCHERU M W, MUGENDI D N, KUNG U J B. Effect of organic and inorganic nutrient sources on soil mineral nitrogen and maize yields in central highlands of Kenya., 2009, 103: 239-246.
[21] ZHANG Y L, LI C H, WANG Y W, HU Y M, CHRISTIE P, ZHANG J L, LI X L. Maize yield and soil fertility with combined use of compost and inorganic fertilizers on a calcareous soil on the North China Plain., 2016, 155: 85-94.
[22] 于天一, 逄焕成, 李玉义, 王伯仁. 红壤旱地长期施肥对春玉米光合特性和产量的影响. 中国农业大学学报, 2013, 18(2): 17-21.
YU T Y, PANG H C, LI Y Y, WANG B R. Effects of long-term fertilization on photosynthetic characteristics and yield of spring maize in upland red soil., 2013, 18(2): 17-21. (in Chinese)
[23] 胡诚, 陈云峰, 乔艳, 刘东海, 张顺陶, 李双来. 秸秆还田配施腐熟剂对低产黄泥田的改良作用. 植物营养与肥料学报, 2016, 22(1): 59-66.
HU C, CHEN Y F, QIAO Y, LIU D H, ZHANG S T, LI S L. Effect of returning straw added with straw-decomposing inoculants on soil melioration in low-yielding yellow clayey soil, 2016, 22(1): 59-66. (in Chinese)
[24] 刘元东, 刘香坤, 姜玉琴, 朱玉成, 董旭勇, 王风英, 刘尚伟. B M 秸秆腐熟剂在小麦上的应用效果. 河南农业科学, 2011, 40(12): 77-79.
LIU Y D, LIU X K, JIANG Y Q, ZHU Y C, DONG X Y, WANG F Y, LIU S W. Research on B M applied straw decomposition inoculant in wheat production.2011, 40(12): 77-79. (in Chinese)
[25] 高洪军, 朱平, 彭畅, 张秀芝, 李强, 张卫建. 等氮条件下长期有机无机配施对春玉米的氮素吸收利用和土壤无机氮的影响. 植物营养与肥料学报, 2015, 21(2): 318-325.
GAO H J, ZHU P, PENG C, ZHANG X Z, LI Q, ZHANG W J. Effects of partially replacement of inorganic N with organic materials on nitrogen efficiency of spring maize and soil inorganic nitrogen content under the same N input., 2015, 21(2): 318-325. (in Chinese)
[26] 王小明, 谢迎新, 王永华, 王晨阳, 朱云集, 郭天财. 施氮模式对冬小麦/夏玉米产量及氮素利用的影响. 植物营养与肥料学报, 2011, 17(3): 578-582.
WANG X M, XIE Y X, WANG Y H, WANG C Y, ZHU Y J, GUO T C. Effects of nitrogen application mode on winter wheat/summer maize yield and nitrogen utilization., 2011, 17(3): 578-582. (in Chinese).
[27] 吕国红, 焦晓光, 王笑影, 谢艳兵. 不同施肥方式对农田有机碳含量的影响. 安徽农业科学, 2010, 38(6): 3035-3038.
Lü G H, JIAO X G, WANG X Y, XIE Y B. Effects of different fertilization methods on organic carbon content in farm land., 2010, 38(6): 3035-3038. (in Chinese)
[28] WITT C, CASSMAN K G, OTTOW J C G, BIKER U. Soil microbial biomass and nitrogen supply in an irrigated lowland rice soil as affected by crop rotation and residue management., 1998, 28: 71-80.
[29] GOYAL S, CHANDER K, MUNDRA M C, KAPOOR K K. Influence of inorganic fertilizers and organic amendments on soil organic matter and soil micro-bia properties under tropical conditions., 1999, 29: 196-200.
[30] 李燕青, 温延臣, 林治安, 赵秉强. 不同有机肥与化肥配施对氮素利用率和土壤肥力的影响. 植物营养与肥料学报, 2019, 25(10): 1669-1678.
LI Y Q, WEN Y C, LIN Z A, ZHAO B Q. Effect of different organic manures combined with chemical fertilizer on nitrogen use efficiency and soil fertility., 2019, 25(10): 1669-1678. (in Chinese)
[31] 陈贵, 张红梅, 沈亚强, 程旺大. 猪粪与牛粪有机肥对水稻产量、养分利用和土壤肥力的影响. 土壤, 2018, 50(1): 59-65.
CHEN G, ZHANG H M, SHEN Y Q, CHENG W D. Application effects of swine and cow manures on rice yield, nutrient uptakes and use efficiencies and soil fertility., 2018, 50(1): 59-65. (in Chinese)
[32] 张赛, 王龙昌. 保护性耕作对土壤团聚体及其有机碳含量的影响. 水土保持学报, 2013, 27(4): 263-272.
ZHANG S, WANG L C. Effect of conservation tillage on stability and content of organic carbon in soil aggregates., 2013, 27(4): 263-272. (in Chinese)
[33] 魏宇轩, 蔡红光, 张秀芝, 张晋京, 任军, 王立春. 不同种类有机肥施用对黑土团聚体有机碳及腐殖质组成的影响. 水土保持学报, 2018, 32(3): 258-263.
WEI Y X, CAI H G, ZHANG X Z, ZHANG J J, REN J, WANG L C. Effects of different organic manures application on organic carbon and humus composition of aggregate fractions in black soil., 2018, 32(3): 258-263. (in Chinese)
[34] 王兴祥, 张桃林, 鲁如坤. 施肥措施对红壤结构的影响. 中国生态农业学报, 2001, 9(3): 70-72.
WANG X X, ZHANG T L, LU R K. Effect of application of fertilizer on soil structure in red soil., 2001, 9(3): 70-72. (in Chinese)
[35] 韩梦颖, 王雨桐, 高丽, 刘振宇, 刘忠宽, 曹卫东, 刘晓云. 降解秸秆微生物及秸秆腐熟剂的研究进展. 南方农业学报, 2017, 48(6): 1024-1030.
HAN M Y, WANG Y T, GAO L, LIU Z Y, LIU Z K, CAO W D, LIU X Y. Straw degradation microorganism and straw decomposing inoculant: A review., 2017, 48(6): 1024-1030. (in Chinese)
[36] 艾天成, 李方敏, 万健民, 王丰. 不同有机肥对土地平整后土壤肥力及水稻生育的影响. 湖北农学院学报, 2002, 22(3): 206-209.
AI T C, LI F M, WAN J M, WANG F. The effect of different organic fertilizers on soil fertility of the recovered land and the growth of rice., 2002, 22(3): 206-209. (in Chinese)
Organic-inorganic coordinated regulation to wheat-maize double crop yield and soil fertility
ZHENG FuLi, LIU Ping, LI GuoSheng, ZHANG BoSong, LI Yan, WEI JianLin, TAN DeShui
(Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences/Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture and Rural Affairs/Shandong Provincial Key Laboratory of Plant Nutrition and Fertilizer, Ji’nan 250100)
【】The objectives of this study were to discuss the effects of different organic-inorganic operation modes on crop yield, nitrogen efficiency and soil nutrients characteristics under the condition that wheat–maize straw returning to the field completely in two seasons, so as to provide a theoretical support for rational utilization of organic nutrient resources and scientific soil fertility culture in a wheat-maize cropping system.【】The experiment studied effects of different organic-inorganic operation modes on yield composition, nitrogen nutrient absorption, soil organic matter and stable aggregate, through designing the combination of chemical fertilizer with different amounts of organic fertilizer and straw-decomposing inoculant.Six experiment treatments were designed: F treatment was only chemical fertilizer, FA treatment was chemical fertilizer and straw-decomposing inoculants, FM1 treatment was chemical fertilizer and 1 500 kg·hm-2organic fertilizer, FM2 treatment was chemical fertilizer and 3 000 kg·hm-2organic fertilizer, FM3 treatment was chemical fertilizer and 4 500 kg·hm-2organic fertilizer, FAM2 treatment was chemical fertilizer and 3 000 kg·hm-2organic fertilizer and straw-decomposing inoculants.】(1)Compared with single chemical fertilizer, application organic fertilizer and straw-decomposing inoculant could significantly increase grain yield of wheat-maize. The yield of chemical fertilizer combined with 4 500kg·hm-2organic fertilizer was the highest, wheat increased by 20.6%, maize by 10.6%. Combined chemical fertilizer with 3 000kg·hm-2organic fertilizer and straw-decomposing inoculant, the yield of wheat and maize increased by 19.5% and 8.2%, respectively. The increase of yield was due to the synergistic improvement of various components. The number of ears and grains per ear of wheat increased significantly and the number of grains per row increased most significantly in maize. (2) The increasing of organic fertilizer and straw-decomposing inoculant could promote the migration of nitrogen to the grain, improve the nitrogen harvest index, and increase the nitrogen accumulation in wheat and maize. The nitrogen accumulation and harvest index for both of FM3 treatment (application with 4 500 kg·hm-2organic fertilizer) and FAM2 treatment (application with 3 000 kg·hm-2organic fertilizer and straw-decomposing inoculant) were significantly higher than F treatment with single application of chemical fertilizer. Compared the treatment with non-bacterial, the NPFP of FA and FAM2 treatments that combined with straw-decomposing inoculant increased by 1.3-1.6kg·kg-1. (3) The content of total nitrogen, alkali-hydrolyzed nitrogen and organic matter in the soil were significantly increased by increasing the organic fertilizer and straw-decomposing inoculant. The content of total nitrogen and organic matter in soil of FM3 treatment was the highest, and the annual total nitrogen increased by 0.17g·kg-1and the organic matter increased by 1.97 g·kg-1compared with F treatment after two years. Different organic and inorganic application modes significantly reduced soil bulk density and increased soil porosity and water-stable aggregates. 【】By two years field experiments, the application of organic fertilizer and straw-decomposing inoculant could increase the yield of wheat and maize, promote nitrogen absorption and transport, and improve soil structure and soil fertility. Under the conditions of this experiment, FAM2 treatment was recommended as an effective fertilization technology model for wheat-maize rotation in this region.
organic-inorganic synergy; straw-decomposing inoculants; yield;nitrogen efficiency; soil fertility
10.3864/j.issn.0578-1752.2020.21.005
2020-05-11;
2020-07-29
国家重点研发计划(2017YFD0301002,2018YFD0200600)、国家自然科学基金(41877100)、山东省技术创新引导计划(2018YFD0200603)、山东省重大科技创新工程(2019JZZY010716)
郑福丽,E-mail:miss_xin@126.com。通信作者谭德水,E-mail:tandeshui@163.com
(责任编辑 杨鑫浩)