李宗新,王良,刘树堂,赵斌,钱欣,李全起,冯波,李升东,刘开昌
·导读·
冬小麦-夏玉米周年水肥高效利用
李宗新1,王良1,刘树堂2,赵斌3,钱欣1,李全起3,冯波4,李升东4,刘开昌4
(1山东省农业科学院玉米研究所,济南 250100;2青岛农业大学资源与环境学院,山东青岛 266109;3山东农业大学,山东泰安 271018;4山东省农业科学院作物研究所,济南 250100)
黄淮海平原小麦和玉米产量分别约占全国的57%和35%,近10年来对全国粮食增产贡献率超过30%,对于保障国家粮食安全意义重大[1]。灌溉和施肥是影响作物生产最明显的两大栽培管理因素,同时也是粮食生产中最受重视和易于调控的两个因素[2]。水肥等资源增投极大地促进了我国粮食产量增加,其中小麦和玉米增产量占粮食增产总量的21.3%和39.8%[3]。冬小麦-夏玉米一年两熟种植制度一定程度上实现了对光、热和耕地等自然资源的高效利用,但是周年水分需求量与降雨量之间有约225 mm的缺口,且主要集中在小麦季;肥料周年需求量约为330 kg·hm-2[4],而实际生产中每年水肥投入量分别约为500 mm和600 kg·hm-2,远远超出周年水肥需求量[5]。“大水大肥”造成资源环境压力的同时增加了粮食生产的成本,压缩了经济效益[6]。依靠大规模水肥资源投入获得粮食连年丰收的生产模式,其在生态、经济上均不可持续[7]。在当前粮食需求不断增加、气候影响不确定性加剧以及环境问题日益严峻的背景下,国家提出了“集约农作、高产高效、持续发展”的现代农业发展战略。在当前粮食需求不断增加、粮食贸易受制于国际形势、气候影响不确定性加剧以及环境问题日益严峻的背景下,深入研究冬小麦、夏玉米周年水肥高效利用技术,是实现冬小麦-夏玉米周年持续丰产增效的重要途径,对于确保国家粮食安全具有重要意义。
水是作物生产的必备要素,水资源短缺、时空分布不均和利用率低等问题极大地制约了我国粮食生产和粮食安全。受季风影响的大气降雨是我国水资源的主要来源,时间上的年内、年际差异和空间上的区域差异明显,同时水资源与耕地分布不匹配[8]。黄淮海平原年均降雨500—900 mm,且主要集中在夏季,温带季风气候特征导致降雨量以及时间分布不均,难以满足小麦-玉米周年尤其是小麦季的水分需求。通过合理灌溉节水,提高作物水分利用率,缓解我国“水缺粮增”矛盾一直以来都是区域小麦-玉米周年生产的研究热点。
农业生产上水分利用效率的研究一般通过田间直接测定、气体交换测定方法或稳定性碳同位素技术计算消耗单位水量生产的经济产量,其中耗水量通常是指灌水量、降雨量、土壤贮水消耗量三者的总和[6,9]。农艺措施影响的棵间蒸发、地表径流以及深层渗漏是影响水分利用效率的重要因素,作物本身遗传基因决定的植物蒸腾和代谢反应则是决定水分利用效率的另一重要因素。基于上述两个主要影响因素,国内在小麦和玉米农艺节水增效和作物生理节水增效方面取得了一系列的进展。中国农业大学基于小麦底墒差异提出了“冬小麦节水高产技术体系”,水分利用效率能够提高到1.5 kg·m-3,实现了节水与高产的双赢;山东农业大学于振文院士团队根据小麦关键生育时期的需水特性“测墒补灌”,能够节省15%—34%的灌水量,提高10%的水分利用率[10-12]。Zhao等[13]研究发现,优化冬小麦生育期间灌溉制度可调控叶面积指数垂直分布,进而塑造高光效群体结构,冠层内光合有效辐射截获率提高3.7%、籽粒产量提高13.5%。在亏缺灌溉条件下,适当减少灌溉频次可增加30 cm以下土层根长密度,从而消耗更多深层土壤水[14]。青岛农业大学基于长期定位试验研究,提出了有机质含量是影响土壤水渗透率的重要因子,探明了土壤有机质含量、土壤容重和大于0.25 mm土壤团聚体重量比是影响土壤水渗透率的关键性因子,明确了施用有机肥相对于施用化肥可提高土壤水渗透率[15]。作物生理节水增效研究主要集中在小麦、玉米抗旱品种的选育[16-18],用生物调节激素等手段维持水分胁迫条件下抗氧化、渗透调节和光合能力[19],通过改善作物根系构型和生理活力增强根系主动吸水能力以及调亏灌溉延缓玉米后期叶片及根系衰老等方面[20]。在冬小麦-夏玉米周年生产模式下,通过小麦季节水灌溉统筹周年耗水,利用小麦和玉米根系特征充分挖掘2 m土体的储水功能实现“玉水麦用”,可实现周年节水、高产、高效[4,21]。随着近年来设施灌溉成本的不断降低,微喷、滴灌等节水灌溉措施在小麦玉米周年生产上的应用方兴未艾,其理论研究逐步成为热点。山东农业大学研究结果表明带宽80 mm、带长60 m微喷灌溉条件下小麦水分利用效率较高[22]。此外,围绕保护性耕作和秸秆覆盖降低作物生育前期棵间蒸发[23-24],添加高吸水聚合物为材料的保水剂提高土壤持水性[25],以及植物表面喷洒成膜性、代谢性和反射性抗蒸腾剂降低作物蒸腾[26-27],传统农艺与新技术结合促进了农田节水增效的长足发展。
肥料投入对粮食增产的贡献超过40%[28],其在农业生产中的作用不可替代。然而农业生产中的肥料投入量远远超过了作物实现最大生产潜力的需求量。过去的30年里,我国粮食生产过程中氮肥投入量的增长速率约为粮食产量增加速率的2倍[29]。过量施肥导致我国氮肥利用率仅为30%—35%,远低于欧美国家的70%[30]。为实现粮食丰产增效,国家提出“双减三控”的号召,基于气候环境和农田管理提高肥料利用率的研究受到广泛关注。
减少投入量是提高肥料利用率最直接的方法,诸多学者和技术人员在不同土壤类型和气候条件下进行氮肥梯度试验研究和大田示范。茹淑华等[31]研究认为,小麦季和玉米季的纯氮施用量范围分别为250—300 kg·hm-2和150—200 kg·hm-2。代快[32]利用15N标记研究氮肥去向发现,小麦季减氮22%能够降低17.0%的氮肥残留和41.6%的其他损失;玉米季减氮33%能够降低35.0%的氮肥残留和37.8%的其他损失。控制肥料养分释放速率,使之匹配小麦和玉米的生长需求规律,从而实现丰产和增效双赢也是减投增效的重要途径之一。山东农业大学张民团队相关研究表明,施用控释氮肥的小麦和玉米较相同施氮量的普通氮肥农田分别增产4.37%—12.86%和4.1%—9.65%,同时氮肥利用效率分别提高16.4%和7.7%[33]。减投与施肥时期、方式等优化结合能够进一步提高肥料利用率。针对小麦和玉米品种特性、产量目标、需肥规律以及土壤养分供给能力的“精准变量施肥”技术,能够减少肥料环境损失的同时提高肥料利用率[34-35]。磷钾肥的合理配施也一定程度上促进了作物养分吸收和氮素利用率提高[36]。冬小麦-夏玉米周年集约化生产中,周年肥料统筹优化管理,减氮28%能够实现丰产增效[32]。减少高温多雨季肥料损失,“麦肥玉用”能够在获得理想产量的前提下使周年施氮量再减少70—190 kg·hm-2[37-38]。
促进根系养分吸收和提高作物本身养分利用能力是提高肥料利用的重要途径[39]。提高土壤养分的生物有效性是促进根系养分吸收的保障,主要包括提高土壤养分的化学有效性和空间有效性,以及作物根系吸收能力。秸秆还田可以促进土壤微生物固定约3%—32%的输入氮,降低氮淋溶风险,后期秸秆腐解和微生物死亡降解释放的氮素供作物吸收利用[40-41];添加纳米碳等分子材料可以降低土壤氮素径流损失[42];以及施用氯甲基嘧啶等硝化抑制剂降低淋洗氮损失[43];通过不同途径提高土壤养分化学有效性等相关研究,促进了肥料高效利用的发展。基于作物根部生理特性的“深松全层施肥”和“增加根际氮含量”等一系列新技术的应用增加了土壤养分的空间有效性[44]。根际养分调控与耕作等农艺措施与品种选育结合,通过改善作物根系构型、增加根系密度和表面积促进养分向根际运移和根系吸收能力,也极大的促进了粮食丰产增效[45-46]。
吸收单位氮素后,提高小麦和玉米自身养分同化效率和养分再转运效率等生理利用率以获得更高的经济产量,也是提高肥料利用率研究的突破点。比较1991—2011年和1940—1990年的玉米品种发现,产量增幅(25%)超过了氮素吸收量增幅(12%)2倍[47],说明玉米植株氮生理利用效率有了极大的提高。董桂春等[48]研究发现氮高效品种的氮肥利用率较氮低效品种高37.70%。肥料利用率的提高既依赖于施肥管理技术的优化,也需要作物优良品种的选育,“良法”和“良种”的配套融合切实促进了小麦、玉米施肥与养分高效。
水、肥在作物生长过程中存在明显的耦合效应[49]。优化农田水肥配置,“以水促肥、以肥调水”做到水肥耦合的协同,是实现粮食丰产增效的有效农田管理措施[50-51]。国内学者设置盆栽、池栽、旱棚以及大田试验,通过显著性方差统计或者回归模型模拟计算交互项系数定量化水肥耦合效应[52-53]。青岛农业大学刘树堂团队研究了水、氮、钾三个因素的耦合对夏玉米产量效应的影响,发现水氮耦合、水钾耦合对产量的影响显著,且均为正效应;建立了产量与水、氮、钾回归方程模型:Y=5594.24+2 742.22X1+1678.31X2+1368.14X3-989.02X12-663.9X22-609.88X32+544.31X1X2+412.23X1X3(=0.996,F=76.99),并由回归方程得出,水、氮、钾的最佳用量为灌水量3069 m3·hm-2、施氮量285 kg·hm-2、施钾量176.4 kg·hm-2,最佳产量为12 111.6 kg·hm-2,三个因素对产量影响的顺序为水>氮>钾[54]。目前,水肥耦合研究系统关注了水肥耦合与地下部根系、地上部分光合特性、产量以及逆境胁迫的关系[55]。
小麦、玉米产量效应是水肥耦合效应最直观的反应,陈新红[56]研究表明,水、氮和产量关系符合y=a0+a1x1+a2x2+a3x12+a4x22+a5x1x2(ai为系数,x1和x2分别为水、肥用量),通过增加水氮投入能够获得作物最大产量,而合理水肥供应能够进一步实现利用效率最大化。根系是作物吸收水和肥的主要器官,通过水、肥调控增加根系表面积和促进养分吸收能力是提高水肥资源利用率的重点研究内容之一。适度的水分胁迫条件下,施氮一定程度上促进小麦根系下扎和根系活力提升,增加小麦对水肥的吸收空间和动力,进而提高水肥利用率[57-58]。隋凯强等[59]研究了不同水肥耦合对夏玉米根系形态及产量的影响,发现缺水条件下合适的水肥配比利于作物生长发育和产量提高,建立了产量与水肥的三元二次回归方程为:Y=6723.94+1589.98X1+470.79X2+182.50X3-194.23X12-74.70X22-78.66X32+42.12X1X2+98.28X1X3+89.39X2X3,且发现在相对含水量70%、施氮量225 kg·hm-2、施碳量2 700 kg·hm-2时,可得到最高产量为12 393.69 kg·hm-2。水、氮调控还能够通过改善玉米叶片光合能力、调控氮代谢相关酶活性以维持较高光合速率的同时有效降低水分蒸腾散失,实现水肥资源高效利用[60]。施氮能够缓解水分胁迫导致的小麦叶片核糖核酸酶和蛋白酶活性增强,保持硝酸还原酶活性,增强小麦干旱抗逆性[61]。
冬小麦夏玉米一年两熟种植制度中,合理匹配水肥资源,达到周年高产高效是实现周年水肥协同高效的难点。统筹周年水肥管理,较目前农民传统方式能够高产、节水、节肥、增效[62]。山东农业大学李全起团队研究发现,在小麦玉米两熟种植制度中,冬小麦生育期间灌溉制度显著影响夏玉米播种时的土壤贮水量。冬小麦生育期间灌溉时期适当后移,在枯水年,后茬夏玉米水分利用效率提高15.3%—24.7%;在平水年,水分利用效率提高3.4%—5.4%。因此,冬小麦生育期间灌溉制度可调控周年水分利用效率[63-64]。山东省农业科学院玉米栽培生理团队研究发现,冬小麦夏玉米一年两熟种植制度下小麦-玉米周年氮素分配比例由6﹕4优化调整为5﹕5,周年产量可提高3.8%,氮素积累量、氮肥表观利用率、氮肥农学利用率和氮肥偏生产力分别提高8.6%、25.8%、26.5%、3.7%[65]。
小麦-玉米周年长期集约化生产导致的耕地质量下降是农田水肥利用率低的制约因素之一。KUANG等[66]研究表明,在小麦玉米两熟种植制度中,冬小麦播种时深松土壤35 cm有利于夏玉米利用60 cm以下土层的水分,提高降水利用效率和产量。隋凯强等[67]研究发现,深翻能改变土壤结构,促进作物对水分养分的吸收,增强根系吸收水分、养分的能力,提高玉米对养分的吸收积累,从而促进玉米的生长发育。水肥优化管理结合耕作和秸秆还田直接或间接影响土壤养分循环,协调土壤水、肥、气、热和作物根系生长,提高土壤养分的有效性和作物吸收能力,促进小麦和玉米水肥高效利用[68]。在前人研究的基础上,中国农业大学在冬小麦-夏玉米周年生产背景下统筹水肥管理,实践了节水、省肥、高产、简化的“四统一”栽培技术体系;王志敏等[69]通过调整耗水结构、施肥方式、根系结构、冠层结构和产量结构,提出了“调整五项结构”的栽培技术体系;近年来“水肥一体化”等工程技术的快速发展为小麦-玉米周年轮作体系丰产增效提供了理论支撑和技术指导。
国内外农业科技工作者在提高小麦、玉米以及冬小麦-夏玉米周年水肥利用、水肥协同增效等方面进行了大量的研究,并在水肥高效利用技术及其生理生态机制研究上取得了长足的进展。然而面对小麦-玉米长期集约化生产导致的环境问题日益严峻的形势,在极端天气频发和气候变化等大背景下,进一步研究水肥资源优化管理,协同促进粮食丰产和资源高效双赢仍然是目前农业丰产增效和绿色可持续的出发点和着力点。研究提高土壤养分生物有效性的机制并提出相应的水肥调控措施,水氮协同与碳、磷、钾以及微量元素的时间和空间上协同增效,基于区域气候特征协同种、土、肥、水、密关系提高作物综合抗性,利用基因工程和分子手段调控作物相关蛋白和酶的表达、增加抗逆性和水肥吸收与利用能力等将会是冬小麦-夏玉米周年丰产增效新的突破点。
本专题刊登的7篇文章重点聚焦小麦-玉米周年水肥高效利用,研究分析水肥资源周年统筹高效利用的限制因素和提高途径,以期为黄淮海地区小麦-玉米周年水肥高效与单产提高协同提供理论依据。其中,《控释尿素基施深度对夏玉米产量和氮素利用的影响》[70]一文明确了夏玉米控释尿素一次性基施深度控制在10—15 cm可显著提高夏玉米的氮素吸收积累量,增加氮素利用效率,降低氮素损失,并获得较高籽粒产量,实现高产高效,可作为夏玉米控释尿素种肥同播的适宜施肥深度。《有机-无机肥协同调控小麦-玉米两熟作物产量及土壤培肥效应》[71]在小麦-玉米两季秸秆全还田条件下,研究表明通过增施有机肥、配施秸秆腐熟剂可以增加小麦、玉米产量,促进籽粒氮素吸收和转运,改善土壤结构和培肥地力。《施氮量对花后高温胁迫后小麦同化物积累、转运及产量的影响》[72]明确了施氮量为240 kg·hm-2可以显著减缓高温胁迫下旗叶衰老,维持旗叶中SS-Ⅱ和籽粒中SS-Ⅰ较高的酶活性,保持较高的同化物合成能力和向籽粒中的转运能力,提高同化物向籽粒中的积累量和分配比例,从而降低高温胁迫下小麦籽粒产量的损失率。《山东夏玉米土壤干旱阈值研究与影响评价》[73]基于田间试验结果与WOFOST作物机理模型,确定了山东夏玉米不同发育期的土壤水分适宜阈值范围与干旱胁迫阈值,明确了穗期与花粒期干旱对夏玉米产量形成的影响更为显著。《优化氮素与品种匹配可协同提高盐碱地夏玉米产量和氮肥利用率》[74]研究明确了不同耐盐碱型夏玉米品种产量形成及氮素利用特征,发现施氮量和品种互作通过影响干物质积累量、产量和氮素吸收转运进而影响氮肥利用效率,优化氮素供应与玉米品种匹配是实现盐碱地玉米产量和氮肥利用效率协同提高的重要途径。《不同春季追氮模式对小麦茎秆抗倒性能及木质素积累的影响》[75]针对倒伏这一制约小麦光温生产潜力进一步提高的重要因素,探讨了春季不同追氮模式对小麦各节间茎秆抗倒伏能力、木质素积累及籽粒产量的影响,提出了高施氮量条件下适宜的春季追氮模式。《秸秆还田对我国主要粮食作物产量效应的整合(Meta)分析》[76]定量分析了全国范围内秸秆还田对小麦、玉米、水稻的产量效应,提出秸秆还田技术的大面积推广应用是一种能够有效提高三种粮食作物光热资源利用效率的技术模式。
[1] 国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2019.
National Bureau of Statistics.. Beijing China Statistical Press, 2019. (in Chinese)
[2] 张经廷, 吕丽华, 张丽华, 董志强, 姚艳荣, 姚海坡, 申海平, 贾秀领. 作物水肥耦合类型量化方法在华北冬小麦水氮配置中的应用. 中国农业科学, 2019, 52(17): 2997-3007.
ZHANG J T, LÜ L H, ZHANG L H, DONG Z Q, YAO Y R, YAO H P, SHEN H P, JIA X L. A novel method for quantitating water and fertilizer coupling types and its application in optimizing water and nitrogen combination in winter wheat in the North China Plain., 2019, 52(17): 2997-3007. (in Chinese)
[3] 农业部. 中国农业统计年鉴. 北京: 中国农业出版社, 2018.
Ministry of Agriculture.. Beijing: China Agricultural Press, 2018. (in Chinese)
[4] ZHAO Z G, QIN X, WANG E L, CARBERRY P, ZHANG Y H, ZHOU S L, ZHANG X Y, HU C S, WANG Z M. Modelling to increase the eco-efficiency of a wheat-maize double cropping system.2015, 210: 36-46.
[5] ZHANG X Y, PEI D, CHEN S Y, SUN H Y, YANG Y H. Performance of double-cropped winter wheat-summer maize under minimum irrigation in the North China Plain., 2006, 98: 1620-1626.
[6] ZHAO J, XUE Q W, JESSUP K E, HAO B Z, HOU X B, MAREK T H, XU W W, EVETT S R, O'Shaughnessy S A, BRAUER D K. Yield and water use of drought-tolerant maize hybrids in a semiarid environment., 2018, 216: 1-9.
[7] FANG Q X, MA L, YU Q, HU C S, LI X X, MALONE R W, AHUJA L R. Quantifying climate and management effects on regional crop yield and nitrogen leaching in the North China Plain., 2013, 42: 1466-1479.
[8] LIU J Y, KUANG W H, ZHANG Z X, XU X L, QIN Y W, NING J, ZHOU W C, ZHANG S W, LI R D, YAN C Z, WU S X, SHI X, JIANG Z N, YU D S, PAN X Z, CHI W F. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s., 2014, 24: 195-210.
[9] LI N, ZHOU C, SUN X, JING J, TIAN X, WANG L. Effects of ridge tillage and mulching on water availability, grain yield, and water use efficiency in rain-fed winter wheat under different rainfall and nitrogen conditions., 2018, 179: 86-95
[10] 许骥坤. 小麦测墒补灌理论与技术的研究[D]. 泰安: 山东农业大学, 2017.
XU J K. Study on theory and technique of supplemental irrigation based on measuring soil moisture in wheat[D]. Tai’an: Shandong Agricultural University, 2017. (in Chinese)
[11] 金修宽, 马茂亭, 赵同科, 安志装, 姜玲玲. 测墒补灌和施氮对冬小麦产量及水分、氮素利用效率的影响. 中国农业科学, 2018, 51(7): 1334-1344.
JIN X K, MA M T, ZHAO T K, AN Z Z, JIANG L L. Effects of nitrogen application on yield, water and nitrogen use efficiency of winter wheat under supplemental irrigation based on measured soil moisture content., 2018, 51(7): 1334-1344. (in Chinese)
[12] 张振, 于振文, 张永丽, 石玉. 氮肥基追比例对测墒补灌小麦冠层不同层次光能利用及干物质转运的影响. 植物营养与肥料学报, 2019, 25(1): 97-105.
ZHANG Z, YU Z W, ZHANG Y L, SHI Y. Effects of basal/topdressing nitrogen ratio on light interception and dry matter transport at different layers of wheat canopy under supplemental irrigation based on soil moisture.2019, 25(1): 97-105. (in Chinese)
[13] ZHAO D D, SHEN J Y, LANG K, LIU Q R, LI Q Q. Effects of irrigation and wide-precision planting on water use, radiation interception, and grain yield of winter wheat in the North China Plain., 2013, 118: 87-92.
[14] LI Q Q, DONG B D, QIAO Y Z, LIU M Y, ZHANG J W. Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China., 2010, 97: 1676-1682.
[15] LIU S T, ZHANG H Y, LIU Q J, ZONG H, YU X X. Effect of long-term application of manure and nitrogen fertilizer on infiltration for a wheat-maize rotation system., 2018, 29(10): 3250-3261.
[16] 张耗, 剧成欣, 陈婷婷, 曹转勤, 王志琴, 杨建昌. 节水灌溉对节水抗旱水稻品种产量的影响及生理基础. 中国农业科学, 2012, 45(23): 4782-4793.
ZHANG H, JU C X, CHEN T T, CAO Z Q, WANG Z Q, YANG J C. Effect of water-saving irrigation on the grain yield of water-saving and drought-resistance rice and its physiological bases., 2012, 45(23): 4782-4793. (in Chinese)
[17] 周磊, 甘毅, 欧晓彬, 王根轩. 作物缺水补偿节水的分子生理机制研究进展. 中国生态农业学报, 2011, 19(1): 217-225.
ZHOU L, GAN Y, OU X B, WANG G X. Progress in molecular and physiological mechanisms of water-saving by compensation for water deficit of crop and how they relate to crop production., 2011, 19(1): 217-225. (in Chinese)
[18] 曾占奎, 王征宏, 王黎明, 庞玉辉, 韩志鹏, 郭程, 王春平. 北部冬麦区小麦新品种(系)的节水生理特性与综合评判. 干旱地区农业研究, 2019, 37(5): 137-143.
ZENG Z K, WANG Z H, WANG L M, PANG Y H, HAN Z P, GUO C, WANG C P. Water-saving physiological characteristics and comprehensive evaluation of new wheat varieties (lines) in northern winter wheat region., 2019, 37(5): 137-143. (in Chinese)
[19] ABID M, HAKEEM A, SHAO Y H, LIU Y, ZAHOOR R, FAN Y H, JIANG S Y, ATA-UL-KARIM S T, TIAN Z W, JIANG D, SNIDER J L, DAI T B. Seed osmopriming invokes stress memory against post-germinative drought stress in wheat (L.)., 2018, 145: 12-20.
[20] JIN K M, SHEN J B, ASHTON R W, WHITE R P, DODD I C, PARRY M A J, WHALLEY W R. Wheat root growth responses to horizontal stratification of fertilizer in a water-limited environment., 2015 386(1/2): 77-88.
[21] 徐彩龙. 华北地区冬小麦—夏玉米双晚模式的优化及其水肥高效调控[D]. 北京: 中国农业大学, 2017.
Xu C L. Optimal double-delay in winter wheat-summer maize double cropping system in North China Plain and its efficient regulation of water and fertilizer[D]. Beijing: China Agricultural University, 2017. (in Chinese)
[22] 王冰心, 赵俊晔, 石玉, 于振文. 不同带长微喷带灌溉对麦田土壤水分分布和干物质积累及籽粒产量的影响. 应用生态学报, 2018, 29(11): 3625-3633.
WANG B X, ZHAO J Y, SHI Y, YU Z W. Effects of micro- sprinkling hose irrigation with different hose lengths on soil water distribution, dry matter accumulation, and grain yield of wheat fields., 2018, 29(11): 3625-3633. (in Chinese)
[23] 张玉娇, 王浩, 王淑兰, 王瑞, 李军, 王小利. 小麦/玉米轮作旱地长期轮耕的保墒增产效应. 农业工程学报, 2018, 34(12): 126-136.
ZHANG Y J, WANG H, WANG S L, WANG R, LI J, WANG X L. Soil moisture preservation and improving of crop yield in dry land under long-term wheat/maize rotation., 2018, 34(12): 126-136. (in Chinese)
[24] 彭正凯, 李玲玲, 谢军红, 邓超超, Eunice E, 王进斌, 颉健辉, 沈吉成, 康彩睿. 不同耕作措施对旱地作物生育期农田耗水结构和水分利用效率的影响. 水土保持学报, 2018, 32(5): 214-221.
PENG Z K, LI L L, XIE J H, DENG C C. EUNICE E, WANG J B, JIE J H, SHEN J C, KANG C R. Effect of different tillage practices on water consumption structure and water use efficiency during crop growth period in arid farmland., 2018, 32(5): 214-221. (in Chinese)
[25] 阚玉景, 黄帮裕, 王新爱, 李永胜, 张盛楚, 杨杰文, 杜建军. 保水剂在尿素和阳离子溶液中的吸水性能及养分吸附特征. 植物营养与肥料学报, 2019, 25(12): 2061-2068.
KAN Y J, HUANG B Y, WANG X A, LI Y S, ZHANG S C, YANG J W, DU J J. Water absorbing capacity and nutrients adsorption characterization of super absorbent polymer in the presence of urea or cations., 2019, 25(12): 2061-2068. (in Chinese)
[26] 黄占斌, 孙朋成, 钟建, 陈雨菲. 高分子保水剂在土壤水肥保持和污染治理中的应用进展. 农业工程学报, 2016, 32(1): 125-131.
HUANG Z B, SUN P C, ZHONG J, CHEN Y F. Application of super absorbent polymer in water and fertilizer conversation of soil and pollution management., 2016, 32(1): 125-131. (in Chinese)
[27] 李婉平, 刘敏, 王皆行, 姚衡, 成正龙, 窦俊霞, 周晓明, 房玉林, 孙翔宇. 炎热气候条件下抗蒸腾剂对酿酒葡萄光合特性与葡萄酒品质的影响. 中国农业科学, 2019, 52(17): 3008-3019.
LI W P, LIU M, WANG K X, YAO H, CHENG Z L, DOU J X, ZHOU X M, FANG Y L, SUN X Y. Influence of anti-transpirant on photosynthesis characteristic and qualities of wines in hot climate., 2019, 52(17): 3008-3019. (in Chinese)
[28] 郭九信. 养分优化管理提高水稻产量及其生理生态机制的研究[D]. 南京: 南京农业大学, 2015.
GUO J X. Study on optimized nutrient management for rice yield and its physiological and ecological mechanisms. Nanjing: Nanjing Agricultural University, 2015. (in Chinese)
[29] MENG Q F, YUE S C, HOU P, CUI ZL, CHEN X P. Improving yield and nitrogen use efficiency simultaneously for maize and wheat in China: A review., 2016, 26(2): 137-147.
[30] 王响玲, 宋柏权. 氮肥利用率的研究进展. 中国农学通报, 2020, 36(5): 93-97.
WANG X L, SONG B Q. Nitrogen fertilizer use efficiency: research progress., 2020, 36(5): 93-97. (in Chinese)
[31] 茹淑华, 张国印. 氮肥施用量对华北集约化农区作物产量和土壤硝态氮累积的影响. 华北农学报, 2015, 30(增刊): 405-409.
RU S H, ZHANG G Y. Effect of nitrogen application rate on crop yield and the soil nitrate nitrogen accumulation in the intensive agriculture region in North China., 2015, 30(Suppl.): 405-409. (in Chinese)
[32] 代快. 华北平原冬小麦/夏玉米水氮优化利用研究[D]. 北京: 中国农业科学院, 2012.
DAI K. Optimization of water and nitrogen use efficiencies in winter wheat and summer maize cropping system in North China Plain[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. (in Chinese)
[33] 孙云保. 控释氮肥定位试验对作物产量和土壤肥力的影响[D]. 泰安: 山东农业大学, 2014.
SUN Y B. Effect of long-term controlled release urea addition on yield and soil fertility. Tai’an: Shandong Agricultural University, 2014. (in Chinese)
[34] MARTINS N, VALENTE M, ROSAS F, SANTOS S, SANTOS L D, NASCIMENTO C. Site-specific nutrient management zones in soybean field using multivariate analysis: An approach based on variable rate fertilization., 2020, 51(5): 1-14.
[35] GATTI M, SCHIPPA M, GARAVANI A. High potential of variable rate fertilization combined with a controlled released nitrogen form at affecting cv. Barbera vines behavior., 2020, 112: 125949. Doi: org/10.1016/j.eja.2019.
[36] ZHOU M H, ZHU B, BRŰGGEMANN N, BERGMANN J, WANG Y Q, BUTTERBACH-BAHL K. N2O and CH4emissions, and NO3-leaching on a crop yield basis from asubtropical rain-fed wheat-maize rotation in response to different types of nitrogen fertilizer., 2014, 17: 286-301.
[37] 山楠, 杜连凤, 毕晓庆, 安志装, 赵丽平, 赵同科. 用15N肥料标记法研究潮土中玉米氮肥的利用率与去向. 植物营养与肥料学报, 2016, 22(4): 930-936.
SHAN N, DU L F, BI X Q, AN Z Z, ZHAO L P, ZHAO T K. Nitrogen use efficiency and behavior studied with15N labeled fertilizer in maize in fluvo-aquic soils., 2016, 22(4): 930-936. (in Chinese)
[38] 薛泽民, 要娟娟, 赵萍萍, 王宏庭. 氮肥分配对冬小麦/夏玉米轮作产量和氮肥效率的影响. 中国土壤与肥料, 2012(1): 59-63, 102.
XUE Z M, YAO J J, ZHAO P P, WANG H T. Influence of nitrogen fertilizer distribution on production and nitrogen use recovery within the rotation of winter wheat and summer maize., 2012(1): 59-63, 102. (in Chinese)
[39] 张金波, 程谊, 蔡祖聪. 土壤调配氮素迁移转化的机理. 地球科学进展, 2019, 34(1): 11-19.
ZHANG J B, CHENG Y, CAI Z C. The mechanisms of soil regulating nitrogen dynamics., 2019, 34(1): 11-19. (in Chinese)
[40] SAID-PILLICINO D, CUCU A C, SODANO M, BIRK J J, GLASER B, CELI L. Nitrogen immobilization in paddy soils as affected by redox conditions and rice straw incorporation., 2014, 228(S1): 44-53.
[41] ZHANG P, WEI T, LI Y, WANG K, JIA Z K, HAN Q F, REN X L. Effects of straw incorporation on the stratification of the soil organic C, total N and C:N ratio in a semiarid region of China., 2015, 153: 28-35.
[42] 王小燕, 王燚, 田小海, 马国辉. 纳米碳增效尿素对水稻田面水氮素流失及氮肥利用率的影响. 农业工程学报, 2011, 27(1): 106-111.
WANG X Y, WANG Y, TIAN X H, MA G H. Effects of NMUrea on nitrogen runoff losses of surface water and nitrogen fertilizer efficiency in paddy feild., 2011, 27(1): 106-111. (in Chinese)
[43] 刘涛, 陶瑞, 李君, 褚贵新, 梁永超, 雷军. 氯甲基吡啶对滴灌棉花生物量、氮素吸收及氮肥利用率的影响. 棉花学报, 2015, 27(5): 463-468.
LIU T, TAO R, LI J, Chu G X, LIANG Y C, LEI J. Effect of nitrapyrin on biomass, nitrogen uptake and nitrogen use efficiency in drip-irrigated cotton plants., 2015, 27(5): 463-468. (in Chinese)
[44] ZHANG W F, DOU Z X, HE P, JU X T, POWLSON D, CHADWICK D, NORSE D, LU Y L, ZHANG Y, WU L, CHEN X P, CASSMAN K G, ZHANG F S. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China., 2013, 110(21): 8375-8380.
[45] 焦小强. 集约化条件下供磷强度与根系空间对玉米生长的影响及磷高效利用策略[D]. 北京: 中国农业大学, 2016.
JIAO X Q. Effect of soil P supply intensity and root growth volume on maize growth and strategies for improving P use efficiency in intensive cropping system[D]. Beijing: China Agricultural University, 2016. (in Chinese)
[46] 李格, 白由路, 杨俐苹, 卢艳丽, 王磊, 张静静, 张银杰. 华北地区夏玉米滴灌施肥的肥料效应. 中国农业科学, 2019, 52(11): 1930-1941.
LI G, BAI Y L, YANG L P, LU Y L, WANG L, ZHANG J J, ZHANG Y J. Effect of drip fertigation on summer maize in North China., 2019, 52(11): 1930-1941. (in Chinese)
[47] CIAMPITTI I A, VYN T J. Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review., 2012, 133: 48-67.
[48] 董桂春, 陈琛, 袁秋梅, 羊彬, 朱正康, 曹文雅, 仲军, 周娟, 罗刚, 王熠, 黄建晔, 王余龙. 氮肥处理对氮素高效吸收水稻根系性状及氮肥利用率的影响. 生态学报, 2016, 36(3): 642-651.
DONG G C, CHEN C, YUAN Q M, YANG B, ZHU Z K, CAO W Y, ZHONG J, ZHOU J, LUO G, WANG Y, HUANG J Y, WANG Y L. The effect of nitrogen fertilizer treatments on root traits and nitrogen use efficiency in indica rice varieties with high nitrogen absorption efficiency., 2016, 36(3): 642-651. (in Chinese)
[49] WANG Y, FU D L, PAN L L, SUN L T, DING Z T. The coupling effect of water and fertilizer on the growth of tea plants., 2016, 39(5): 620-627.
[50] LENKA S, SINGH A K, LENKA N K. Soil water and nitrogen interaction effect on residual soil nitrate and crop nitrogen recovery under maize–wheat cropping system in the semi-arid region of northern India., 2013(179): 108-115.
[51] LI Q Q, BIAN C Y, LIU X H, MA C J, LIU Q R. Winter wheat grain yield and water use efficiency in wide-precision planting pattern under deficit irrigation in North China Plain., 2015, 153: 71-76.
[52] 李正鹏, 宋明丹, 冯浩. 水氮耦合下冬小麦 LAI 与株高的动态特征及其与产量的关系. 农业工程学报, 2017, 33(4): 195-202.
LI Z P, SONG M D, FENG H. Dynamic characteristics of leaf area index and plant height of winter wheat influenced by irrigation and nitrogen coupling and their relationships with yield., 2017, 33(4): 195-202. (in Chinese)
[53] 魏廷邦, 柴强, 王伟民, 王军强. 水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应. 中国农业科学, 2019, 52(3): 428-444.
WEI T B , CHAI Q, WANG W M, WANG J Q. Effects of coupling of irrigation and nitrogen application as well as planting density on photosynthesis and dry matter accumulation characteristics of maize in oasis irrigated areas., 2019, 52(3): 428-444. (in Chinese)
[54] 路亚, 刘强, 宋希云, 刘树堂. 非石灰性潮土水肥耦合对夏玉米产量效应的影响. 玉米科学, 2010, 18(4): 121-124, 130.
LU Y, LIU Q, SONG X Y, LIU S T. Effects of coupling water and fertilizer on summer maize yield innoncalcareous fluvo-aquic soil., 2010, 18(4): 121-124, 130. (in Chinese)
[55] BAI Z H, LU J, ZHAO H, VELTHOF G L, OENEMA O, CHADWICK D, WILLIAMS J R, JIN S Q, LIU H B, WANG M R, STROKAL M, KROEZE C, HU C S, MA L. Designing vulnerable zones of nitrogen and phosphorus transfers to control water pollution in China., 2018, 52: 8987-8988.
[56] 陈新红. 土壤水分与氮素对水稻产量和品质的影响及其生理机制[D]. 扬州: 扬州大学, 2004.
CHEN X H. Effect of moisture and nitrogen nutrient on grain yield and quality of rice and their physiological mechanism[D]. Yangzhou: Yangzhou University, 2004. (in Chinese)
[57] 徐国伟, 王贺正, 翟志华, 孙梦, 李友军. 不同水氮耦合对水稻根系形态生理、产量与氮素利用的影响. 农业工程学报, 2015, 31(10): 132-141.
XU G W, WANG H Z, ZHAI Z H, SUN M, LI Y J. Effect of water and nitrogen coupling on root morphology and physiology, yield and nutrition utilization for rice., 2015, 31(10): 132-141. (in Chinese)
[58] 徐国伟, 孙会忠, 陆大克, 王贺正, 李友军. 不同水氮条件下水稻根系超微结构及根系活力差异. 植物营养与肥料学报, 2017, 23(3): 811-820.
XU G W, SUN H Z, LU D K, WANG H Z, LI Y J. Differences in ultrastructure and activity of rice roots under different irrigation and nitrogen supply levels., 2017, 23(3): 811-820. (in Chinese)
[59] 隋凯强, 赵龙刚, 刘树堂, 皇甫呈惠, 林少雯, 陈晶培. 水肥耦合对夏玉米根系形态及产量的影响. 华北农学报, 2018, 33(4): 232-238.
SUI K Q, ZHAO L G, LIU S T, HUANGFU C H, LIN S W, CHEN J P. Effects of coupling water and fertilizer on root morphology and yield of summer maize, 2018, 33(4): 232-238. (in Chinese)
[60] 李广浩, 赵斌, 董树亭, 刘鹏, 张吉旺, 何在菊. 控释尿素水氮耦合对夏玉米产量和光合特性的影响. 作物学报, 2015, 41(9): 1406-1415.
LI G H, ZHAO B, DONG S T, LIU P, ZHANG J W, HE Z J. Effects of coupling controlled release urea with water on yield and photosynthetic characteristics in summer maize., 2015, 41(9): 1406-1415. (in Chinese)
[61] 樊小林, 何文勤. 氮肥、干旱胁迫、基因型差异对冬小麦吸氮量的效应. 植物营养与肥料学报, 1998, 4(2): 131-137.
FAN X L, HE W Q. Effect of nitrogen fertilizer, water stress and the genotypes on nitrogen up take of winter wheat., 1998, 4(2): 131-137. (in Chinese)
[62] LIU C Y , WANG K, MENG S X, ZHENG X H, ZHOU Z X, HAN S H, CHEN D L, YANG Z P. Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat-maize rotation field in northern China., 2011, 140: 226-233.
[63] LI Q Q, CHEN Y H, LIU M Y, ZHOU X B, DONG B D, YU S L. Effect of irrigation to winter wheat on the soil moisture, evapotranspiration, and water use efficiency of summer maize in North China., 2007, 50: 2073-2080.
[64] LI Q Q, CHEN Y H, ZHOU X B, YU S L, GUO C C. Effect of irrigation to winter wheat on the radiation use efficiency and yield of summer maize in a double cropping system., 2012, 1-6. doi:10.1100/2012/476272.
[65] 韩小伟, 高英波, 张慧, 薛艳芳, 钱欣, 王竹, 赵海军, 刘开昌, 李宗新. 氮肥统筹对麦玉周年产量及氮肥利用效率的影响. 山东农业科学, 2019, 51(4): 79-84, 2.
HAN X W, GAO Y B, ZHANG H, XUE Y F, QIAN X, WANG Z, ZHAO H J, LIU K C, LI Z X. Effects of nitrogen fertilizer co-ordination on annual yield and nitrogen use efficiency of wheat and maize., 2019, 51(4): 79-84, 2. (in Chinese)
[66] KUANG N K, TAN D C, LI H J, GOU Q S, LI Q Q, HAN H F. Effects of subsoiling before winter wheat on water consumption characteristics and yield of summer maize on the North China Plain., 2020, 227: 105786.
[67] 隋凯强, 付丽亚, 韩伟, 林少雯, 刘树堂, 皇甫呈惠. 不同耕作深度下调控水肥对玉米生长状况的影响. 华北农学报, 2018, 33(6): 212-218.
SUI K Q, FU L Y, HAN W, LIN S W, LIU S T, HUANGFU C H. Effect of regulating water and fertilizer on maize growth under different tillage depth., 2018, 33(6): 212-218. (in Chinese)
[68] 王改玲, 李立科, 郝明德. 长期施肥和秸秆覆盖土壤活性有机质及碳库管理指数变化. 植物营养与肥料学报, 2017, 23(1): 20-26.
WANG G L, LI L K, HAO M D. Effect of long-term fertilization and straw mulch on the contents of labile organic matter and carbon management index., 2017, 23(1): 20-26. (in Chinese)
[69] 王志敏, 王璞, 李绪厚, 李建民, 鲁来清. 冬小麦“四统一”技术体系——节水、省肥、高产、简化栽培. 全国小麦栽培科学学术研讨会论文集. 中国作物学会, 2006: 10.
WANG Z M, WANG P, LI X H, LI J M, LU L Q. ‘Four unified’ technology system of winter wheat - water saving, fertilizer saving, high yield and simple cultivation//Chinese Crop Society, 2006: 10. (in Chinese)
[70] 丁相鹏, 李广浩, 张吉旺, 刘鹏, 任佰朝, 赵斌. 控释尿素基施深度对夏玉米产量和氮素利用的影响. 中国农业科学, 2020, 53(21): 4342-4354.
DING X P, LI G H, ZHANG J W, LIU P, REN B Z, ZHAO B. Effects of base application depths of controlled release urea on yield and nitrogen utilization of summer maize., 2020, 53(21): 4342-4354. (in Chinese)
[71] 郑福丽, 刘苹, 李国生, 张柏松, 李燕, 魏建林, 谭德水. 有机-无机肥协同调控小麦-玉米两熟作物产量及土壤培肥效应. 中国农业科学, 2020, 53(21): 4355-4364.
ZHENG F L, LIU P, LI G S, ZHANG B S, LI Y, WEI J L, TAN D S. Organic-inorganic coordinated regulation to wheat-maize double crop yield andsoilfertility., 2020, 53(21): 4355-4364. (in Chinese)
[72] 高春华, 冯波, 曹芳, 李升东, 王宗帅, 张宾, 王峥, 孔令安, 王法宏. 施氮量对花后高温胁迫后小麦同化物积累、转运及产量的影响. 中国农业科学, 2020, 53(21): 4365-4375.
GAO C H, FENG B, CAO F, LI S D, WANG Z S, ZHANG B, WANG Z, KONG L A, WANG F H. Effects of nitrogen application rate on assimilate accumulation, transportation and grain yield in wheat under high temperature stress after anthesis., 2020, 53(21): 4365-4375. (in Chinese)
[73] 董智强, 李曼华, 李楠, 薛晓萍, 陈辰, 张继波, 赵红, 侯英雨, 潘志华. 山东夏玉米土壤干旱阈值研究与影响评价. 中国农业科学, 2020, 53(21): 4376-4387.
DONG Z Q, LI M H, LI N, XUE X P, CHEN C, ZHANG J B, ZHAO H, HOU Y Y, PAN Z H. The thresholds of soil drought and its impacts on summer maize in Shandong province., 2020, 53(21): 4376-4387. (in Chinese)
[74] 高英波, 张慧, 刘开昌, 张华斌, 李源方, 付希强, 薛艳芳, 钱欣, 代红翠, 李宗新. 优化氮素与品种匹配可协同提高盐碱地夏玉米产量和氮肥利用率. 中国农业科学, 2020, 53(21): 4388-4398.
GAO Y B, ZHANG H, LIU K C, ZHANG H B, LI Y F, FU X Q, XUE Y F, QIAN X, DAI H C, LI Z X. The coordination of nitrogen optimization with matched variety could enhance maize grain yield and nitrogen use efficiency of summer maize in saline land., 2020, 53(21): 4388-4398. (in Chinese)
[75] 董荷荷, 骆永丽, 李文倩, 王元元, 张秋霞, 陈金, 金敏, 李勇, 王振林. 不同春季追氮模式对小麦茎秆抗倒性能及木质素积累的影响. 中国农业科学, 2020, 53(21): 4399-4414.
DONG H H, LUO Y L, LI W Q, WANG Y Y, ZHANG Q X, CHEN J, JIN M, LI Y, WANG Z L. Effects of different spring nitrogen topdressing modes on lodging resistance and lignin accumulation of winter wheat., 2020, 53(21): 4399-4414. (in Chinese)
[76] 杨竣皓, 骆永丽, 陈金, 金敏, 王振林, 李勇. 秸秆还田对我国主要粮食作物产量效应的整合(Meta)分析. 中国农业科学, 2020, 53(21): 4415-4429.
YANG J H, LUO Y L, CHEN J, JIN M, WANG Z L, LI Y. Effects of main food yield under straw return in China: A Meta-Analysis., 2020, 53(21): 4415-4429. (in Chinese)
Annual high efficiency utilization of water and fertilizer of a wheat-maize double cropping system
LI Zongxin1, WANG Liang1, LIU Shutang2, ZHAO Bin3, QIAN Xin1, LI Quanqi3, FENG Bo4, LI Shengdong4, LIU Kaichang4
(1Maize Research Institute, Shandong Academy of Agricultural Sciences, Ji’nan 250100;2College of Resources and Environment,Qingdao Agricultural University, Qingdao 266109, Shandong;3Shandong Agricultural University, Tai’an 271018, Shandong;4Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji’nan 250100)
10.3864/j.issn.0578-1752.2020.21.003
2020-09-28;
2020-10-26
国家重点研发计划项目(2018YFD0300600,2017YFD0301000)
李宗新,E-mail:sdaucliff@sina.com。通信作者刘开昌,E-mail:liukc1971@163.com
(责任编辑 杨鑫浩)