高英波,张慧,刘开昌,张华斌,李源方,付希强,薛艳芳,钱欣,代红翠,李宗新
优化氮素与品种匹配可协同提高盐碱地夏玉米产量和氮肥利用率
高英波1,张慧1,刘开昌2,张华斌3,李源方1,付希强3,薛艳芳1,钱欣1,代红翠2,李宗新1
(1山东省农业科学院玉米研究所/小麦玉米国家工程实验室/农业部黄淮海北部玉米生物学与遗传育种重点实验室,济南 250100;2山东省农业科学院作物研究所,济南 250100;3山东汇邦渤海农业开发有限公司,山东东营 257000)
【】明确不同耐盐碱型夏玉米品种产量形成及氮素利用特征,挖掘盐碱地玉米氮素高效利用的生物学潜力。以耐盐型玉米品种登海605、鲁单818和不耐盐型玉米品种鲁单981、连胜188为供试材料,在不同施氮水平下(0、180和360 kg·hm-2,记作N0、N1和N2),系统研究了施氮对不同耐盐碱类型玉米品种物质积累、氮素积累、氮素分配与利用效率及产量形成的影响,并分析了氮肥水平和品种间的互作效应。施用氮肥可显著提高盐碱地夏玉米籽粒产量,高氮水平下能够提高不耐盐型玉米品种产量潜力。与N1处理相比,N2处理下耐盐型玉米品种产量无显著变化,不耐盐品种LD981和LS188 2年平均显著增产9.93%和16.31%,各品种氮肥偏生产力(NPFP)、氮肥农学效率(NAE)和氮肥利用率(NUE)均显著降低。互作效应分析表明,产量及其构成因素的差异是由品种、氮肥水平及品种和氮肥水平之间的互作效应共同作用的结果。不同氮肥水平下,耐盐型品种比不耐盐品种分别增产7.78%—27.63%(N0)、7.40%—24.87%(N1)和0.32%—9.55%(N2);氮肥利用效率(NUE)分别提高26.65%—48.28%(N1)和1.20%—24.87%(N2)。耐盐型品种较不耐盐型品种具有较高的物质生产和氮素吸收利用能力,在低氮下具有较高的产量优势,而不耐盐型品种在高氮水平下有利于产量的发挥。施氮量、品种及其互作效应通过影响干物质积累量、产量和氮素吸收转运影响氮肥利用效率,优化氮肥供应与品种匹配,能够实现盐碱地玉米产量与氮肥利用效率的协同提高。
夏玉米;品种;氮肥水平;产量;氮肥利用效率;盐碱地
【研究意义】土壤盐碱化是一个世界性的资源和生态问题,是农业生产主要的非生物胁迫因子之一。据第二次全国土壤普查资料统计,我国可供开发利用的盐碱地多达1 300万hm2,占我国耕地总面积10%左右。其中,黄河三角洲地区现有盐碱耕地多达30万hm2[1],是中低产田利用的主要对象,粮食增产潜力巨大。玉米是我国第一大作物,近年来玉米总产量的增加主要来自种植面积增加和单产水平提高的双重贡献[2]。在单产增加难度较大的背景下,挖掘盐碱耕地的潜力,增加玉米种植面积,对提高我国玉米总产进而保障国家粮食安全具有重要意义。【前人研究进展】氮肥对玉米增产效应明显,但受盐碱地土壤环境(高含盐量,高pH)影响,氮肥利用效率较低,进而影响玉米生长发育[3-5]。农户往往通过增施氮肥来提升玉米产量,氮肥的过量施用不仅导致氮肥利用率显著下降,同时也对生态环境构成潜在威胁[6]。前人研究表明,合理施用氮肥能改善盐碱地玉米生长环境,提高叶面积指数、作物生长速率、净同化率和产量[7-13]。同时,氮素还能提高作物抗逆性,减缓衰老[14-15],改善植物细胞渗透能力[16]和物质生产能力[17],是作物提高产量的关键因素。玉米对氮素的吸收、利用能力存在显著的基因型差异[18-19],充分挖掘玉米自身的生物学潜力也是实现玉米高产和氮肥利用效率的重要途径之一。因此,优化氮素供应与品种匹配,协同提高盐碱地玉米产量及氮肥利用效率(NUE),对玉米生产节本增效和环境安全都具有重要意义。【本研究切入点】前人主要通过调整施氮量、时期及施肥方式等措施来提高玉米产量及氮肥利用效率,从挖掘品种自身生物学潜力及优化氮素供应与品种匹配的角度入手的研究较少,尤其是在盐碱地条件下的相关研究鲜见报道。【拟解决的关键问题】本研究从不同耐盐型品种对氮素吸收利用的差异角度入手,研究施氮对其氮素吸收利用特征及产量形成的影响,旨在明确不同耐盐型玉米品种的氮素利用特征及其差异性,为盐碱地玉米氮素高效利用及耐盐碱玉米品种的选育与评价提供参考。
试验于2016年和2018年的6月至10月(2017年夏玉米播种后遇暴雨导致出苗困难,试验失败)在山东省农业科学院黄河三角洲汇邦博士科研工作站(118°37′E,37°47′N)进行。2016和2018年试验进行期间月降雨量见图1,数据来源于汇邦博士科研工作站小型气象站。试验地土壤含盐量2.49‰,0—40 cm土壤pH 8.0,有机质18.4 g·kg-1,全氮1.1 g·kg-1,速效氮24.8 mg·kg-1,速效磷10.1 mg·kg-1,速效钾168.5 mg·kg-1,前茬为冬小麦。
本试验在前期品种鉴选[20]研究基础上,选用耐盐碱玉米品种登海605(DH605)、鲁单818(LD818),不耐盐碱玉米品种鲁单981(LD981)、连胜188(LS188)为供试材料,种植密度为60 000株/hm2。试验设不施氮(N0:0)、优化施氮(N1:180 kg·hm-2)、高量施氮(N2:360 kg·hm-2)3个处理,随机区组排列,小区面积120 m2,3次重复。每个处理磷(P2O5)、钾(K2O)肥用量分别为90 kg·hm-2和150 kg·hm-2,做种肥一次施入,氮肥按照4﹕6分为种肥与小喇叭口期(第9片展开叶期)施入。其中氮肥为尿素(46%),磷肥为过磷酸钙(18%),钾肥为硫酸钾(50%)。2016年于6月18日播种,10月1日收获,2018年于6月20日播种,9月28日收获。其他田间管理措施同一般高产田。
图1 试验区2016和2018年玉米生育期降雨量分布
1.3.1 干物质测定 分别于吐丝期(R1)和成熟期(R6),选取生长整齐一致且具有代表性的连续3株植株样品,吐丝期(R1)将样品分为叶片、茎秆(含叶鞘、雄穗)2个部分,成熟期(R6)将样品分为茎秆、叶片、苞叶+穗轴和籽粒4个部分,于烘箱内105℃杀青0.5 h后,75℃烘干至恒重,称重后磨粉过筛保存。
1.3.2 氮含量测定 植株样品采用硫酸-双氧水法消煮,采用半微量凯氏定氮法测定吐丝期和成熟期植株样品全氮含量。
1.3.3 测产与考种 成熟期收获各小区中间5 m 3行果穗,实收测产,籽粒产量以14%含水量计算。脱粒前以均重法取20个果穗,数穗行数、行粒数,脱粒后称取千粒重。
氮素吸收和氮效率参照前人报道的方法[21-22]进行计算:
氮肥农学利用率(NAE,kg·kg-1)=(施氮处理籽粒产量-不施氮处理籽粒产量)/施氮量;
氮肥偏生产力(NPFP,kg·kg-1)=施氮处理籽粒产量/施氮量;
氮肥利用率(NUE,%)=(施氮处理地上部总吸氮量-不施氮处理地上部总吸氮量)/施氮量×100;
土壤氮依存率(SNDR,%)=不施氮处理地上部吸氮量/施氮处理地上部吸氮量×100;
营养器官氮素转运量(NTA,kg·hm-2)= 开花期氮素累积量-成熟期营养体氮素累积量;
开花后氮素同化量(AANAA,kg·hm-2)=成熟期籽粒氮素积累量-营养器官氮素转运量;
氮素转运效率(NTE,%)=氮素转运量/开花期营养体氮素累积量×100;
氮素转运对籽粒的贡献率(NCP,%)=氮素转运量/成熟期籽粒氮素累积量×100。
采用Microsoft Excel 2016数据录入与整理,分析软件SAS 9.0 进行方差分析,软件Sigma Plot 12.5作图。
除年份和氮肥水平对夏玉米氮素转运效率(NTE)、品种对夏玉米氮肥农学利用效率(NAE)影响不显著外,年份、品种和氮肥水平对夏玉米籽粒产量(GY)、穗数(EN)、穗粒数(KN)、千粒重(TGW)、氮肥偏生产力(NPFP)、氮肥利用率(NUE)、土壤氮依存率(SNDR)、成熟期籽粒含氮量(NAAG)、营养器官氮素转运量(NTA)、花后氮素同化量(AANAA)和氮素转运对籽粒贡献率(NCP)均存在显著或极显著影响。除夏玉米NAE外,年份和品种对各测定指标均存在显著交互作用;除夏玉米KN、TGW和NAE外,年份和氮肥水平对各测定指标均存在显著交互作用;除夏玉米EN、NAE、NTE外,品种和氮肥水平对各测定指标均存在显著交互作用;除夏玉米GY、EN、TGW、NPFP和NAE外,年份、品种和氮肥水平对各测定指标均存在显著交互作用(表1)。
表1 品种、氮肥水平以及二者交互作用对夏玉米产量、产量构成、氮素积累转运及利用效率的影响
GY:籽粒产量;EN:穗数;KN:穗粒数;TGW:千粒重;NPFP:氮肥偏生产力;NAE:氮肥农学利用效率;NUE:氮肥利用率;SNDR:土壤氮依存率;NAAG:成熟期籽粒含氮量;NTA:营养器官氮素转运量;AANAA:花后氮素同化量;NTE:氮素转运效率;NCP:氮素转运对籽粒贡献率。*在0.05水平上差异显著,**在0.01水平上差异显著,***在0.001水平上差异显著,ns 无显著差异
GY: Grain yield; EN; Ear number; KN: Kernel number; TGW: Thousand-grain weight;NPFP: Nitrogen partial factor productivity; NAE: Nitrogen agronomic efficiency; NUE: Nitrogen use efficiency; SNDR: Soil nitrogen dependency rate; NAAG: N accumulation amount of grain; NTA: Nitrogen translocation amount; AANAA: Assimilating amount of nitrogen after anthesis; NTE: Nitrogen translocation efficiency; NCP: Nitrogen contribution proportion. * represents significantly different at 0.05 probability level, ** represents significantly different at 0.01 probability level, *** represents significantly different at 0.001 probability level, ns represents no significant difference at 0.05 probability level
施用氮肥可显著提高不同耐盐型夏玉米品种收获穗数、千粒重和穗粒数,进而提高籽粒产量,穗粒数增加主要是行粒数增加引起(表2)。与N0处理相比,在N1和N2处理下,DH605 2年平均增产29.69%和33.44%,LD818平均增产27.33%和29.56%,LD981平均增产27.78%和40.48%,LS188 平均增产32.56%和54.17%;与N1处理相比,N2处理下耐盐型玉米品种DH605和LD818产量提高,但差异不显著,不耐盐品种LD981和LS188 2年平均增产9.93%和16.31%。同一氮肥水平下,产量在N0和N1处理下都表现为耐盐型品种显著高于不耐盐型品种。在N0处理下,DH605 2年平均产量分别比LD981和LS188高11.74%和27.63%,LD818 2年平均产量分别比LD981和LS188高7.78%和23.12%;N1处理下,DH605 2年平均产量分别比LD981和LS188高13.40%和24.87%,LD818 2年平均产量分别比LD981和LS188高7.40%和18.27%;N2处理下,各品种间籽粒产量无显著差异。
施用氮肥能够显著提高夏玉米地上部干物质积累量(图2)。2016年,与N0处理相比,施氮下各品种单株籽粒重和单株总干物重均显著提高;与N1处理相比,N2处理下耐盐型夏玉米品种DH605和LD818单株籽粒重和单株干物重无显著差异,不耐盐型夏玉米品种LD981和LS188单株籽粒重显著增加7.07%和3.09%(<0.05)。2018年,与N0处理相比,N1和N2处理下不同耐盐型夏玉米品种地上部各器官干物重和单株总干物重均显著增加;与N1处理相比,N2处理下耐盐型夏玉米品种DH605和LD818单株籽粒重和单株干物重无显著差异,不耐盐型夏玉米品种LD981和LS188单株籽粒重增加18.25%和19.70%(<0.05),单株干物重增加12.30%和10.63%(<0.05)。
随施氮量增加,除DH605土壤氮依存率(SNDR)降低不显著外,其余品种氮肥偏生产力(NPFP)、氮肥农学效率(NAE)、氮肥利用率(NUE)和土壤氮依存率(SNDR)均显著降低(<0.05)(表3)。与N1处理相比,DH605 N2处理的NPFP、NAE、NUE和SNDR 2年平均分别降低48.58%、43.71%、42.31%和4.78%;LD818分别降低48.98%、44.96%、38.22%和6.53%;LD981分别降低45.45%、29.97%、31.11%和9.16%;LS188分别降低42.12%、17.76%、24.67%和10.52%。
在同一氮肥水平下,NPFP和NUE均表现为耐盐型品种显著高于不耐盐型品种,SNDR总体上表现为不耐盐型品种高于耐盐型品种。N1处理下,DH605的NPFP 2年平均分别比LD981和LS188高12.41%和24.91%,NUE高36.12%和58.72%,LD818的NPFP 2年平均分别比LD981和LS188高6.51%和18.35%,NUE高17.17%和36.63%;N2处理下,除DH605的NUE显著高于LD981和LS188外,各品种间NPFP和NUE无显著差异。
表2 施氮水平对不同耐盐型夏玉米产量及产量构成的影响
同列不同小写字母表示同一品种内不同处理5%水平差异显著。下同
Values followed by different small letters within a column under the same hybrid treatment are significantly different at 0.05 probability level. The same as below
柱上不同大写字母表示4个品种在不同氮素供应水平下地上部干物质积累总量差异显著(P<0.05),不同小写字母表示同一品种在不同氮水平下不同部位干物质积累差异显著(P<0.05)
施用氮肥能显著提高籽粒含氮量(NAAG)、营养器官氮素转移量(NTA)及开花后氮素同化量(AANAA)(表4)。与N0处理相比,DH605 N1处理的NAAG、NTA和AANAA 2年平均分别提高55.61%、20.18%和81.09%,N2处理分别提高64.86%、20.28%和81.29%;LD818 N1处理分别提高38.14%、18.13%和86.06%,N2处理分别提高49.65%、23.14%和84.32%;LD981 N1处理分别提高35.31%、43.15%和41.22%,N2处理分别提高51.58%、48.46%和60.06%;LS188 N1处理分别提高39.44%、33.98%和40.22%,N2处理分别提高55.02%、56.14%和49.53%。
2016年,各品种氮素转运效率(NTE)总体上表现为随施氮量增加呈增加趋势,耐盐型玉米品种DH605和LD818的氮素转运对籽粒的贡献率(NCP)显著降低,不耐盐型玉米品种LD981和LS188的NCP无显著变化。2018年,耐盐型玉米品种DH605和LD818的NTE(这可能是受2018年8月份降雨较多且比较集中影响)和NCP总体上表现为随施氮量增加呈显著降低趋势,不耐盐型玉米品种LD981和LS188的NTE无显著变化,但NCP表现为显著增加趋势。
表3 施氮水平对不同耐盐型夏玉米氮素利用效率的影响
氮素营养在作物的生长发育过程中起着十分重要的作用。在盐胁迫条件下,由于氯离子与硝酸根离子的拮抗作用,玉米生长易受到氮亏缺的影响[8],进而导致氮肥利用效率和产量降低[23]。Gadalla等[13]研究表明,施用120 kg·hm-2的氮素可显著改善盐胁迫下玉米的生长、产量和氮素吸收。本研究表明,施氮可显著提高盐碱地夏玉米干物质积累和产量,耐盐型玉米品种DH605和LD818在施氮量为180 kg·hm-2时,成熟期单株干物重和产量表现较优;当施氮量增加到360 kg·hm-2时,单株干物重和产量无显著增加,不耐盐型玉米品种LD981和LS188单株干物重和产量则表现为随施氮量增加呈显著增加趋势。前人研究表明,穗粒数和粒重的减少是盐胁迫条件下玉米产量降低的主要原因[24-25];也有研究表明,盐胁迫对玉米籽粒产量的影响不是灌浆量的减少,而是籽粒结实率的降低[23]。本研究表明,盐胁迫条件下,增施氮肥显著提高不同耐盐型玉米籽粒产量是穗数、粒重和穗粒数共同作用的结果,而穗粒数的增加主要是由行粒数的增加引起,产量形成对氮肥的响应可能与品种的耐盐性有关。总体表明,耐盐型玉米品种在低氮(180 kg·hm-2)条件下,产量显著高于不耐盐型品种,高氮(360 kg·hm-2)条件下,不同耐盐型玉米品种之间产量无显著差异。氮肥施用量为180 kg·hm-2时,不能满足不耐盐型玉米品种对氮素的需求,进而影响其玉米产量提高。
氮素的吸收利用易受土壤环境、品种、施氮量、水热条件等诸多因素的影响[4-5,19]。养分的转运量和转运效率是营养器官养分向籽粒转移输出的重要指标[26],籽粒中的氮素主要来自生育后期吸收及营养器官的转运分配[27],吸收及转运的氮素被分配到籽粒中的比例对产量和氮肥利用效率高低有决定性作用[28]。本研究表明,施氮可显著提高成熟期籽粒含氮量(NAAG)、营养器官氮素转移量(NTA)及开花后氮素同化量(AANAA)。当施氮量增加到360 kg·hm-2时,耐盐型品种DH605和LD818的NAAG、NTA无显著变化,但不耐盐型玉米品种LD981和LS188的NAAG、NTA呈显著增加趋势,高氮水平下能提高不耐盐玉米品种的营养器官氮素转移量(NTA),进而提高籽粒产量。前人研究表明,氮素供应充足时,营养器官的氮素转移对籽粒的氮贡献率高,反之,营养器官的转运量较大,会引起叶片的早衰,过量施肥易导致营养器官氮代谢旺盛,运往籽粒的氮素减少[29]。年际间气候变化也是影响作物氮素吸收、积累与转运的关键因子[30-31]。本研究中,2016年夏玉米生育期内降雨量分布较为均匀,各品种氮素转运效率(NTE)总体上表现为随施氮量增加呈增加趋势,耐盐型玉米品种DH605和LD818的氮素转运对籽粒的贡献率(NCP)显著降低,不耐盐型玉米品种LD981和LS188的NCP无显著变化。2018年8月中下旬降雨量较多且比较集中,玉米正处于开花吐丝期,氮肥流失和玉米早衰导致开花后氮素同化量减少,氮素转运效率(NTE)降低,且由于耐盐型玉米相比不耐盐型玉米品种具有较高的氮素吸收同化能力,进而导致耐盐型玉米品种DH605和LD818的氮素转运对籽粒的贡献率(NCP)显著降低,而不耐盐型玉米品种LD981和LS188的NCP表现为显著增加趋势。
表4 施氮水平对不同耐盐型夏玉米氮转运效率的影响
施用氮肥是实现盐碱地玉米增产的重要途径,但过量施氮并不能显著提高产量,反而会导致氮肥利用效率降低。本研究结果表明,低氮条件下耐盐型品种DH605和LD818较不耐盐型品种LD981和LS188具有较高的产量和氮素利用效率。盐胁迫会抑制玉米氮的吸收和转运[12,32],增施氮肥有助于改善盐胁迫条件下的玉米生产能力[5,10,13]。前人研究表明,LD818和DH605属于氮高效型品种,LS188为氮中效型品种,LD981为氮低效型品种,氮高效型玉米品种具有更好氮素利用和物质生产能力[22,33]。本研究结果表明,品种和氮肥互作对玉米产量和氮肥利用效率具有显著影响,选用耐盐、氮高效型玉米品种可能是进一步提高盐碱地玉米产量和氮肥利用效率的重要途径,但玉米氮高效与其耐盐性是否具有一致性需要进一步深入研究。玉米的产量和氮素吸收利用受外界环境影响较大,年际间有差异,但在同等土壤和气象条件下,玉米品种的高产潜力和氮素吸收利用差异是实现高产高效的主要因素。总体表明,盐碱地玉米种植应选用耐盐、氮高效型品种,优化氮肥供应与品种匹配是实现玉米产量与氮肥利用效率的协同提高的关键途径。
施用氮肥能够显著提高盐碱地夏玉米籽粒产量,同一施氮量下耐盐型玉米品种氮素吸收效率、氮肥利用率、植株氮素吸收量显著高于不耐盐型品种。耐盐型品种较不耐盐型品种具有较高的物质生产和氮素吸收利用能力,在低氮条件下具有较高的产量优势,而不耐盐型品种在高氮水平下有利于产量的发挥。施氮水平、品种及施氮水平和品种互作通过影响干物质积累量、产量和氮素吸收转运影响氮肥利用效率,优化氮肥供应与品种匹配,能够实现盐碱地玉米产量与氮肥利用效率的协同提高。
[1] 董红云, 朱振林, 李新华, 杨丽萍, 张正. 山东省盐碱地分布、改良利用现状与治理成效潜力分析. 山东农业科学, 2017, 49(5): 134-139.
DONG H Y, ZHU Z L, LI X H, YANG L P, ZHANG Z. Analysis on distribution, utilization status and governance effect of saline-alkali soil in Shandong province., 2017, 49(5): 134-139. (in Chinese)
[2] 苗珊珊, 徐永金, 陆迁. 中国三大区域玉米产量及增长率的因素分解. 湖北农业科学, 2014, 53(12): 2932-2936.
MIAO S S, XU Y J, LU Q. Maize yield and growth factor decomposition in three major districts of China., 2014, 53(12): 2932-2936. (in Chinese)
[3] Drake D R, Ungar I A. Effects of salinity, nitrogen, and population density on the survival, growth, and reproduction of(Chenopodiaceae)., 1989, 76(8): 1125-1135.
[4] Farsiani A, Ghobadi M E. Effects of PEG and NaCl stress on two cultivars of corn (L.) at germination and early seedling stages., 2009, 57: 382-385.
[5] Farooq M, Hussain M, Wakeel A, Siddique K H M. Salt stress in maize: effects, resistance mechanisms, and management. A review., 2015, 35(2): 461-481.
[6] 易琼, 张秀芝, 何萍, 杨利, 熊桂云. 氮肥减施对稻-麦轮作体系作物氮素吸收, 利用和土壤氮素平衡的影响. 植物营养与肥料学报, 2010, 16(5): 1069-1077.
YI Q, ZHANG X Z, HE P, YANG L, XIONG G Y. Effects of reducing N application on crop N uptake, utilization, and soil N balance in rice-wheat rotation system., 2010, 16(5): 1069-1077. (in Chinese)
[7] 王永亮, 王琦, 杨治平, 郭军玲, 郭彩霞. 轻度盐碱地玉米专用肥缓效氮不同添加比例的研究. 中国生态农业学报, 2016, 24(12): 1614-1622.
WANG Y L, WANG Q, YANG Z P, GUO J L, GUO C X. Analysis of slow-release nitrogen fraction in maize specialized fertilizer for mild-saline alkaline soils., 2016, 24(12): 1614-1622. (in Chinese)
[8] Shahzad M, Witzel K, Zörb C, Mühling K H. Growth-related changes in subcellular ion patterns in maize leaves (L.) under salt stress., 2012, 198(1): 46-56.
[9] QU C X, Liu C, Gong X L, LI C X, HONG M M, WANG L, HONG F S. Impairment of maize seedling photosynthesis caused by a combination of potassium deficiency and salt stress., 2012, 75: 134-141.
[10] Akram M, Ashraf M Y, Waraich E A, Hussain M, Hussain N, Mallahi A R. Performance of autumn planted maize (L.) hybrids at various nitrogen levels under salt affected soils., 2010, 29(1): 23-32.
[11] 詹其厚, 王慎强, 周静, 陈杰, 檀满枝. 沿淮低洼地玉米施肥效应与土壤供肥能力研究. 土壤通报, 2011, 42(6): 1415-1419.
ZHAN Q H, WANG S Q, ZHOU J, CHEN J, TAN M Z. Study on fertilization effects on maize and soil nutrient supply capacity in lowland along Huaihe River., 2011, 42(6): 1415-1419. (in Chinese)
[12] Turan M A, Elkarim A H A, Taban N. Effect of salt stress on growth and ion distribution and accumulation in shoot and root of maize plant., 2010, 5(7): 584-588.
[13] Gadalla A M, Hamdy A, Galal Y G M, Aziz H A A, Mohamed M A A, Ahmed K Z. Evaluation of maize grown under salinity stress and N application strategies using stable nitrogen isotope., 2007, 8: 1653-1662.
[14] Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando-Melissa R, Diego, Bonilla R. Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (L.)., 2012, 61: 264-272.
[15] 杜海岩, 柳新伟, 崔德杰, 徐双, 赵亚慧. 氮素营养对盐碱地棉花生长及生理特性的影响. 华北农学报, 2015, 30(6): 195-200.
DU H Y, LIU X W, CUI D J, XU S, ZHAO Y H. Effects of nitrogen nutrition on the growth and physiological characteristics of cotton in saline soil., 2015, 30(6): 195-200. (in Chinese)
[16] Naidoo G, Naidoo Y. Effects of salinity and nitrogen on growth, ion relations and proline accumulation in., 2001, 9(6): 491-497.
[17] 李嘉, 吕慎强, 杨泽宇, 李惠通, 王吕, 阳婷, 王筱斐, 王林权. 氮肥运筹对黄土塬区春玉米产量、效益和氮肥利用率的综合效应. 植物营养与肥料学报, 2020, 26(1): 32-41.
LI J, Lü S Q, YANG Z Y, LI H T, WANG L, YANG T, WANG X F, WANG L Q. Comprehensive effects of nitrogen fertilizer management on yield, economic performance and nitrogen use efficiency of spring maize in Loess Plateau, China., 2020, 26(1): 32-41. (in Chinese)
[18] 徐祥玉, 张敏敏, 翟丙年, 李生秀, 张兴昌, 王朝辉. 夏玉米氮效率基因型差异研究. 植物营养与肥料学报, 2006, 12(4): 495-499.
XU X Y, ZHANG M M, ZHAI B N, LI S X, ZHANG X C, WANG Z H. Genotypic variation in nitrogen use efficiency in summer maize., 2006, 12(4): 495-499. (in Chinese)
[19] 徐建亭, 姜雯. 不同夏玉米品种氮积累和利用效率差异的研究. 玉米科学, 2014, 22(4): 62-66.
XU J T, JIANG W. Differences in nitrogen accumulation and nitrogen utilization efficiency among summer maize cultivars., 2014, 22(4): 62-66. (in Chinese)
[20] 高英波, 张慧,薛艳芳, 匡朴, 钱欣, 代红翠, 李源方, 王竹, 韩小伟, 李宗新. 不同夏玉米品种耐盐性综合评价与耐盐品种筛选. 玉米科学, 2020, 28(2): 33-40.
GAO Y B, ZHANG H, XUE Y F, KUANG P, QIAN X, DAI H C, LI Y F, WANG Z, HAN X W, LI Z X. Comprehensive evaluation of salt tolerance and screening for salt tolerance accessions of different summer maize varieties., 2020, 28(2): 33-40. (in Chinese)
[21] 蔡红光, 袁静超, 刘剑钊, 闫孝贡, 张洪喜, 梁尧, 任军. 高密度种植条件下春玉米氮素的需求规律与适宜施氮量. 中国农业科学, 2017, 50(11): 1995-2005.
CAI H G, YUAN J C, LIU J Z, YAN X G, ZHANG H X, LIANG R, REN J. Optimal nitrogen application rate and nitrogen requirement characteristics in spring maize under high planting density condition., 2017, 50(11): 1995-2005. (in Chinese)
[22] 温立玉, 薛艳芳, 张慧, 张秀清, 高英波, 刘开昌, 李宗新. 不同氮效率玉米品种亲本自交系花粒期氮素转运特性. 植物营养与肥料学报, 2019, 25(4): 568-578.
WEN L Y, XUE Y F, ZHANG H, ZHANG X Q, GAO Y B, LIU K C, LI Z X. The characteristics of nitrogen translocation of maize inbred lines with different nitrogen efficiency from anthesis to maturity., 2019, 25(4): 568-578. (in Chinese)
[23] Hütsch B W, Saqib M, Osthushenrich T, Schubert S. Invertase activity limits grain yield of maize under salt stress., 2014, 177(2): 278-286.
[24] Schubert S, Neubert A, Schierholt A, Sümer A, Zörb C. Development of salt-resistant maize hybrids: the combination of physiological strategies using conventional breeding methods., 2009, 177(3): 196-202.
[25] Kaya C, Ashraf M, Dikilitas M, Murat, Tuna A L. Alleviation of salt stress-induced adverse effects on maize plants by exogenous application of indoleacetic acid (IAA) and inorganic nutrients-A field trial., 2013, 7(2): 249.
[26] 刘占军, 谢佳贵, 张宽, 王秀芳, 侯云鹏, 尹彩侠, 李书田. 不同氮肥管理对吉林春玉米生长发育和养分吸收的影响. 植物营养与肥料学报, 2011, 17(1): 38-47.
LIU Z J, XIE J G, ZHANG K, WANG X F, HOU Y P, YI C X, LI S T. Maize growth and nutrient uptake as influenced by nitrogen management in Jilin province., 2011, 17(1): 38-47. (in Chinese)
[27] Schiltz S, Munier-Jolain N, Jeudy C. Dynamics of exogenous nitrogen partitioning and nitrogen remobilization from vegetative organs in pea revealed by15N in vivo labeling throughout seed filling., 2005, 137(4): 1463-1473.
[28] Subedi K D, Ma B L. Effects of N-deficiency and timing of N supply on the recovery and distribution of labeled15N in contrasting maize hybrids., 2005, 273(1/2): 189-202.
[29] 王进军, 柯福来, 白鸥, 黄瑞冬. 不同施氮方式对玉米干物质积累及产量的影响. 沈阳农业大学学报, 2008, 39(4): 392-395.
WANG J J, KE F L, BAI O, HUANG R D. Effect of dry weight accumulation and yields of maize under different nitrogen application., 2008, 39(4): 392-395. (in Chinese)
[30] CHEN X C, CHEN F J, CHEN Y L, GAO Q, YANG X L, YUAN L X, ZHANG F S, MI G H. Modern maize hybrids in Northeast China exhibit increased yield potential and resource use efficiency despite adverse climate change., 2013, 19(3): 923-936.
[31] 张建军, 樊廷录, 党翼, 赵刚, 王磊, 李尚中. 密度与氮肥运筹对陇东旱塬全膜双垄沟播春玉米产量及生理指标的影响. 中国农业科学, 2015, 48(22): 4574-4584.
ZHANG J J, FAN T L, DANG Y, ZHAO G, WANG L, LI S Z. The effects of density and nitrogen management on the yield and physiological indices of spring maize under plastic-covered ridge and furrow planting in Loess Plateau East of Gansu., 2015, 48(22): 4574-4584. (in Chinese)
[32] Gunes A, Inal A, Alpaslam M, Erslan F, Bagsi E G, Cicek N. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (L.) grown under salinity.2007, 164:728-736.
[33] 张慧, 赵红香, 温立玉, 王庆成, 刘开昌, 赵海军, 李宗新. 黄淮海区域30个夏玉米品种干物质积累和氮素转运特性. 玉米科学, 2016, 24(3): 78-84.
ZHANG H, ZHAO H X, WEN L Y, WANG Q C, LIU K C, ZHAO H J, LI Z X. Characteristics of dry matter accumulation and nitrogen use efficiency of 30 summer maize hybrids with cluster analysis grouped in Huang-Huai-Hai region.2016, 24(3): 78-84. (in Chinese)
The coordination of nitrogen optimization with matched variety could enhance maize grain yield and nitrogen use efficiency of summer maize in Saline land
GAO YingBo1, ZHANG Hui1, LIU KaiChang2, ZHANG HuaBin3, LI YuanFang1, FU XiQiang3, XUE YanFang1, QIAN Xin1, DAI HongCui2, LI ZongXin1
(1Maize Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory of Wheat and Maize/Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-huai River Plain, Ministry of Agriculture, Ji’nan 250100;2Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji’nan 250100;3Huibangbohai Agricultural Development Co., Ltd., Dongying 257000, Shandong)
【】In order to achieve synergistic promotion of both maize grain yield and nitrogen use efficiency (NUE) under salt stress, it is essential to explore the performance difference of different salt-tolerant maize varieties on yield formation, nitrogen uptake, transport and utilization, to excavate biological potential of maize varieties using nitrogen, so as to provide matched maize variety for the optimized nitrogen application regime.【】In this study, salt-tolerance maize varieties Denghai605, Ludan818 and salt-sensitive maize varieties Ludan981 and Liansheng188 were separately used to systematically study the effects on accumulation and distribution of dry matter and nitrogen, nitrogen utilization efficiency and yield formation under different nitrogen application rates of 0, 180 and 360 kg·hm-2, denoted by N0, N1 and N2 treatments in turn, as well as the interaction of nitrogen levels and maize varieties and inter-annual were analyzed.【】Suitable nitrogen application rate could significantly increase grain yield. Compared with N1 treatment, there were no difference in grain yield for salt-tolerance varieties but significant increase for Ludan981 (avg. 9.93%) and Liansheng188 (avg. 16.31%) under N2 treatment. Also, high nitrogen application (N2) got lower nitrogen agricultural efficiency (NAE), nitrogen utilization efficiency (NUE) and nitrogen partial factor productivity (NPFP) than low nitrogen application (N1). The difference in grain yield and yield components was the result from the varieties, nitrogen regimes, and their interaction. Compared with salt-sensitive maize varieties, salt-tolerance maize varieties had greater grain yield, nitrogen absorption and use efficiency across same nitrogen regime. Specifically, the grain yield of salt-tolerance maize varieties were increased by 7.78%-27.63% (N0), 7.40%-24.87% (N1), and 0.32%-9.55% (N2), respectively, while the nitrogen utilization efficiency were increased by 26.65%-48.28% (N1) and 1.20%-24.87% (N2), respectively.【】It was performance well for the salt-tolerances varieties than the salt-sensitive varieties on dry matter accumulation and nitrogen uptake and utilization. Low nitrogen application was beneficial for salt-tolerant maize variety getting higher grain yield and vice versa. The nitrogen utilization efficiency was affected by maize varieties, nitrogen regimes and its interaction, through affecting grain yield, dry matter accumulation, and nitrogen uptake and utilization. Thus, it would be an efficient strategy to achieve synergistic promotion of both maize grain yield and nitrogen use efficiency, through the coordination of nitrogen optimization with matched maize variety.
summer maize; variety; nitrogen level; yield; nitrogen utilization efficiency; saline land
10.3864/j.issn.0578-1752.2020.21.008
2020-05-20;
2020-09-09
国家重点研发计划(2018YFD0300602)、山东省重点研发计划(2017CXGC0307,2019GNC21500)、山东省现代农业产业技术体系创新团队项目(SDAIT-02-07)
高英波,E-mail:yingboandy@163.com。通信作者李宗新,E-mail:sdaucliff@sina.com
(责任编辑 杨鑫浩)