薛丁方
摘 要:三角函数是高中数学学习中的主要内容,不仅在高中阶段的数学学习中具有重要地位,而且据了解,历年高考数学题中约15%的考察内容与三角函数有关。想要掌握三角函数的解题技巧,首先需要对三角函数概念、性质、公式具备足够的了解,奠定抓实基础,进而在三角函数的解题过程中总结规律,掌握灵活多变的解题方法,做到活学活用,以此提升三角函数的学习质量。本文在三角函数学习的过程中总结了以下几点经验,以供参考与批评。
关键词:高中数学;三角函数;解题技巧
一、掌握基本概念、性质定理,打好基础
三角函数的內容较为复杂,其中涉及到大量的公式与定理,而每一个三角函数公式的使用条件与定理的使用范围受到题目内容的限制,若是在三角函数学习中没有充分的掌握三角函数的概念、公式、性质,理解程度不够,记忆量不足,缺乏知识的灵活运用能力,就会在三角函数解题过程中盲目性解答,出现错用、错套等问题。基于此,笔者认为提升高中生三角函数解题能力,掌握解题技巧的关键在于打好基础。
1.概念与性质的学习是学生三角函数学习中的基础,只有真正吃透三角函数概念,掌握三角函数的性质,才能具有三角函数概念的灵活运用能力,在三角函数的解题过程中灵活应对,周期性与图像性质是我们在高中阶段三角函数学习中的常见性质,在解题中学生应具备三角函数性质的正确判断能力,通过对其性质的判断降低解题难度。如该题目为三角函数周期性类型,学生在该类问题解答中实现利用角度转换的方式,减少解题过程中的计算难度,利用该问题的类型得出解集,利用周期性三角函数在某一特定区间内的奇偶性和单调性,建立图像,利用其特性,迅速找出问题解决的方法。
2.需要重点学习三角函数公式,公式的学习效果以及应用能力的提升,可以让高中生的三角函数解题更加快速、准确。但是,高中阶段的三角函数公式涉及的内容角度,在强行记忆与三角函数有关的公式下,虽然记忆量增加,众多公式也进入的脑袋里,但是,在面对实际问题解答中如何灵活运用,成为了高中生三角函数学习过程中的又一难题。因为用一类型的三角函数公式具有一定的相似度,很多同学会容易记混、错用,因此,我们可以使用口诀记忆的方式,如“一全正,二正弦,三正切,四余弦”、“函数名不变,符号看象限”等,快速记忆,同时需要通过实际的联系,掌握不同公式之间的差异,区分其具体用法,通过总结与分析,掌握不同公式的应该规律。
二、三角函数解题技巧探究
1.利用转化法,灵活多变,解答问题
在充分了解三角函数概念、性质、定理的基础上,需要我们具有清晰的解题思路,掌握科学、简便的解题方法,以求在有限的时间内快速解答出正确的答案。转化法是我们在高中阶段三角函数学习中常用的一种方法,通过转化法在解题中的应用,可以将原本看似复杂的问题转化为简单易懂的形式,在求解,降低了三角函数问题的解答难度。举例说明:
例1已知sinα+cosα=m2,tgα+ctgα=n,求m2与n的关系.
此题看似较为复杂,但只要对tgα+ctgα进行适当转换,并找出sinα+cosα与sinαcosα的关系,就可以快速解出答案.由于tgα+ctgα=1/sinαcosα,根据题目已知条件,可以得出sinαcosα=1/n,又由于sinαcosα=[(sinα+cosα)2-1]/2=m2-1/2,因此,可以推导出m2与n的关系式,即m2=2/n+1.
2.利用托底法简化表达式
上述中的例题属于容易转化的类型,而在面对不易转化的题目类型时,可以采取托底法简化求解,还是结合一道例题进行具体说明.
例2已知tgα=3,求解sinα-3cosα2sinα+cosα的值.
在该题中,只有把求解表达式化简为包含tgα的形式,才能利用已知条件进行求解.根据求解表达式特点,可以将其分子和分母同时除以cosα,将其转化为tgα-3/2tgα+1,代入已知条件后,可以快速求解出,
sinα-3cosα/2sinα+cosα=0.
3.总结方法规律
首先,在练习的过程中应选择具有典型特征的题型,盲目性的练习不仅不会提升解题能力,还会增加学习负担。其次,针对性练习,每一种三角函数题型都有其自身的一套解题方法,学生可以采取逐个类型练习的方法,从中总结方法与规律,掌握该类型的解题技巧,再次面对此类型题的时候,就能够轻松应对。三角函数的解题方法分为很多种,除了上述提到的转化法、简化法外,还包括排除法、特殊值法、数形结合法等。通过平时练习中的总结经验、积累和归纳,有助于提升解题速度与准确率。
结语:结合上文可知,三角函数的知识内容繁杂,涉及到的公式较多,对于高中生而言具有一定的学习难度。想要掌握三角函数的解题技巧,要一步一步脚印,扎实基础,吃透三角函数的概念,充分了解不同类型公式的使用条件,具有公式的灵活运用能力,能够根据题目的类型及时判断解题方法,通过对条件以及表达式的转化、简化,梳理清晰的解题思路,避免错误理解题目内容、错用公式,总结规律与经验,以此提升高中生的三角函数解题能力,掌握符合自身学习特点的三角函数解题技巧。
参考文献
[1]例析三角函数求值题的解题技巧[J].彭万雷.华夏教师.2016(12)
[2]分析高中数学三角函数解题常见误区及正确解题方案[J].宗位勇.数学大世界(下旬).2016(07)