关于一类多目标半无限规划的最优性条件

2019-09-10 21:52严建军李钰杨帆郝娜张杰
关键词:广义分式学报

严建军 李钰 杨帆 郝娜 张杰

摘 要:本文在(C,α,ρ,d)-凸函数的基础上,提出广义(C,α,ρ,d)K,θ-凸函数的概念,并讨论涉及这类新广义凸性的一类多目标半无限规划的最优性条件。

关键词:多目标规划;半无限规划;广义(C,α,ρ,d)K,θ-凸函数;最优性

中图分类号:O221.6

文献标识码: A

随着多目标最优化和半无限规划的研究发展,凸性理论逐步被广泛地应用到各个研究范畴中,且取得了许多有意义的重要成果。文献[1]引入了(F,α,ρ,d)-凸函数,文献[2]对其进一步推广,得到了(C,α,ρ,d)-凸函数,并研究了涉及这类凸性的最优性条件和对偶结果。文献[3-7]对于涉及(C,α,ρ,d)-凸性的多目标规划、多目标分式规划等问题的最优性和对偶理论进行了研究。作者在此基础上,结合局部渐近锥、K-方向导数[8]和K-次微分[9],提出广义(C,α,ρ,d)K,θ-凸函数,并在新的广义凸性下,研究了一类多目标半无限规划的最优性条件。

3 结语

本文定义了广义(C,α,ρ,d)K,θ-凸函数,讨论了涉及新广义凸性的一类多目标半无限规划的最优性条件,所得结果从理论上对已有凸性进行了有益推广,充实了广义凸性和数学规划的相关理论。还可进一步深入研究这类新广义凸性及其相关的对偶性、鞍点[14]和算法设计与稳定性分析等内容。

参考文献:

[1]LIANG Z A, HUANG H X, PARDALOS P M. Optimality conditions and duality for a class of nonlinear fractional programming problems[J]. Journal of Optimization Theory and Application, 2001,110(3):611-619.

[2]YUAN D H, LIU X L, CHINCHULUUN A, et al. Nondifferentiable Minimax Fractional Programming Problems with (C,α,ρ,d)-convexity [J]. Journal of Optimization Theory and Application,2006,129(1):185-199.

[3]CHINCHULUUN A, PARDALOS P M. Multiobjective Programming Problems under Generalized Convexity[M]//TRN A,  ILINSKAS J. Models and Algorithms for Global Optimization. New York:Springer,2007:3-20.

[4]CHINCHULUUN A, YUAN D, PARDALOS P M. Optimality Conditions and Duality for Nondifferentiable Multiobjective Fractional Programming with Generalized Convexity[J].Annals of Operations Research,2007,154(1):133-147.

[5]YUAN D, CHINCHULUUN A, LIU X, et al. Generalized Convexities and Generalized Gradients Based on Algebraic Operations[J]. Journal of Mathematical Analysis and Applications,2006,321(2):675-690.

[6]YUAN D, CHINCHULUUN A, LIU X, et al. Optimality Conditions and Duality for Multiobjective Programming Involving (C,α,ρ,d)-type-I Functions[M]//KONNOV I V, LUC D T, RUBINOV A M. Generalized Convexity and Related Topics. Berlin: Springer-Verlag, 2007,583:73-87.

[7]LONG X J. Optimality Conditions and Duality for Nondifferentiable Multiobjective Fractional Programming Problems with (C,α,ρ,d)-convexity[J]. Journal of Optimization Theory and Application,2011,148(1):197-208.

[8]ELSTER K H. Thierfelder J. On Cone Approximations and Generalized Directional Derivatives[M]//CLARKE F H, DEMYANOV V  F, GIANNESSI F. Nonsmooth optimization and related topics. New York:Springer US,1989:133-154.

[9]CASTELLANI M. Nonsmooth Invex Functions and Sufficient Optimality Conditions[J].Journal of Mathematical Analysis and Applications,2001,255(1):319-332.

[10]KUK H, LEE G M, TANINO T. Optimality and Duality for Nonsmooth Multiobjective Fractional Programming with Generalized Invexity[J].Journal of Mathematical Analysis and Applications,2001,262:365-375.

[11]張庆祥. 非光滑半无限多目标规划弱非控解的充分性[J].高校应用数学学报, 1996, 11A(4):461-466.

[12]王丽, 张庆祥. 一类一致Fb-凸多目标规划的最优性条件[J].延安大学学报(自然科学版),2001,20(3):7-11.

[13]SHIMIZY K, ISHIZUKA Y, BARD J F. Nondifferentiable and Two-Level Mathematical Programming[M].Boston:Kluwer Academic Publishers,1997.

[14]李钰, 严建军, 李江荣. 具有广义凸性的一类半无限向量分式规划的鞍点准则[J]. 贵州大学学报(自然科学版), 2015,32(5):1-4.

(责任编辑:周晓南)

猜你喜欢
广义分式学报
The Last Lumberjacks
例谈一类分式不等式问题的解法
一类特别的广义积分
任意半环上正则元的广义逆
Analysis of Characters Shaping in Ring Lardner’s Haircut
Analysis of I Heard the Owl Call My Name from an Intercultural View
论学报的发行管理创新
《十堰职业技术学院学报》再添殊荣
学习分式的五个禁忌
八年级数学(下册)期中检测题(A)