多元函数取值范围问题的常见求解失误

2019-08-05 12:05广东省深圳市盐田高级中学518083
中学数学研究(江西) 2019年7期
关键词:题设辨析变形

广东省深圳市盐田高级中学 (518083)

罗 诚

在解答多元函数取值范围问题时,由于涉及多个变元,在解题过程中,相对于单变量函数取值范围问题,更容易出现这样或者那样的失误.有感于此,本文拟将解决这类问题时的常见失误进行梳理归类,以供教学参考.

一、疏漏显性题设

对于多元函数取值范围问题,关联多个变量,常常题设较多.在求解过程中,容易出现顾此失彼的情况,以至于疏漏显性题设导致解题失误.

图1

+∞).

图2

二、忽视等号成立

等号能否成立,关乎到多元函数取值范围的上下确界.在解题过程中,倘若不慎,就有可能出现等号不成立的情况,从而由此出现解题失误.

例3 若正数x,y满足x+3y=5xy,求3x+4y的取值范围.

三、变更变元范围

求解多元函数取值范围问题,在变形的过程中,出现不等价变形,引起变更变元范围的失误是司空见惯的.

例5 已知实数x,y满足3x2+2y2=6x,求u=x2+3y2的取值范围.

剖析:上述解法,变形过程扩大了变元x,y的取值范围,正确解法如下:

四、描绘图像失真

限于直观的局限,难免在描绘图像时,使描绘出的图像产生失真,并由此形成解题失误.

例7 在平面直角坐标系中,点A,B,C的坐标分别为(0,1),(4,2),(2,6).如果P(x,y)是△ABC围成的区域(含边界)上的点,那么当u=xy取到最大值时,点P的坐标是.

图3

误解:画出图形,如图3,联想到线性规划问题解法,由图形直观可知,当点P与点C(2,6)重合时,w=xy的最大值为12.

辨析:上述解法似乎无误,但这种解法是由于描绘图像失真的误解.

请看以下的定量分析:

由题意可得线段BC的方程为y=-2x+10(2≤x≤4),代入u=xy可得u=x(-2x+10)=

图4

辨析:上面给出的是一种典型的图像失真导致的误解.

图5

猜你喜欢
题设辨析变形
怎一个“乱”字了得!
——辨析“凌乱、混乱、胡乱、忙乱”
变形记
谈诗的变形
“论证说理”与“沟通说服”:高考论述类与实用类写作之异同辨析
2019年高考江苏卷第12题的四种解法
谈谈2013年高考辽宁卷理科数学第21题的解法
解答一道课本习题的一般情形
“我”的变形计
会变形的饼
同义词组辨析练习