李明非 景士伟 崔士举 刘昊迪
摘要:本文探讨了原子物理的课程教学及近代物理实验的改革,分析讨论了近代物理实验在原子物理教学中的贡献,教学过程中以实验一理论一新的实验一新的理论或理论修正为线索,向学生揭示了微观物理的研究历程以及微观世界的物理规律,以期能有效地提高学生的综合素质和专业从教能力,使其能更好地适应基础教育的教学实际。
关键词:近代物理实验;素质教育;原子物理教学
doi:10.16083/j.cnki.1671-1580.2019.05.020
中图分类号:G642.0 文献标识码:A 文章编号:1671-1580(2019)05-0083-04
一、引言
1923年物理学家密立根在获得诺贝尔奖时曾说过:“科学靠两条腿走路,一是理论,一是实验,有时一条腿走在前面,有时另一条腿走在前面,但只有两条腿才能前进。”原子物理是物理学专业的基础必修课,它与经典物理中的力、热、光、电等课程有所不同,这些课程都有成熟完美的理论体系,运用严密的数学演绎方法,可以推演公式计算出结果并解决实际问题,但原子物理既没有经典物理中的力、热、光、电完美,也没有量子力学的严谨,核心是半经典半量子的内容,因此是联系经典物理和近代量子物理的重要桥梁,其建立和发展与近一百多年的近代物理实验发现密切相关心。在原子物理的教学中,通过实验现象的分析归纳总结,逐步建立发展原子的理论模型,揭示原子结构及运动规律,例如通过原子物理的一系列重大实验发现过程诱导学生模拟先人建立研究微观领域的物理思想,通过α粒子散射、分立光谱和电磁相互作用等原子物理的分析方法使学生掌握研究和解决微观物理问题的方法,实验结果与分析可以更加清晰地让学生看到科学探索的过程,在实验过程中发现更多新的信息修正理论然后再在实践中加以检验,进而提高学生的综合素质和专业能力。近代物理实验在原子物理教学中的主要贡献我们归纳为:①近代物理实验可以发现新的实验现象,探索新的物理规律;②近代物理实验还可以检验理论模型的正确性,判断理论假设的成立条件,给出理论的适用范围;③近代物理实验更可以使理论得到推广应用,并开拓新的研究领域。但是,现阶段“近代物理实验”课与专业基础理论课“原子物理”不能很好地相对应,理论课程相对于实验课滞后或滞前,这就导致实验与理论课教学不能同步,其结果是学生在没有相应基础知识的情况下进行实验,学生无法深入理解实验中所包含的原子理论,只能简单机械地完成实验步骤,获得实验结果。本文将着重以氢氘光谱实验和塞曼效应实验讨论近代物理实验课与原子物理理论教学的融合,这不仅可加深对原子物理理论的理解,还可学习如何用实验手段,再现物理现象,并通过现象认识其物理规律。
二、氢氘光谱实验与玻尔氢原子理论的建立及发展
近代原子理论是从氢原子光谱实验开始的,整个发展过程很好的诠释了近代物理实验在原子物理中的贡献,通过原子物理理论教学可以让学生了解近代物理发展的精彩一幕。到1885年光谱实验已观测到14条氢光谱线,巴耳末分析研究后提出了一个经验公式,而里德伯在1889年又独立凭经验凑出了一个更普遍的方程。新的实验现象意味着新的物理规律的萌芽、发展和完善。年轻的丹麦物理学家玻尔发展和完善了汤姆孙和洛伦兹的研究方法,创造性地把普朗克提出的量子假說应用于当时人们持怀疑的卢瑟福核式结构模型,并把原子光谱的离散线状谱的物理机制和原子结构联系起来,非常完美地解释了困惑物理学家们近30年的光谱实验之谜。随后玻尔理论的拓展又成功地解释了类氢光谱的实验现象,并证实了氢的同位素“氘”的存在(实验检验了理论模型的正确性)。爱因斯坦心悦诚服地称玻尔的理论是一个“伟大的发现”。
原子物理作为普通物理最后一门课程,通常安排在大二下学期进行,“原子的玻尔一索末菲理论”在第二章中讲授,而“氢氘光谱实验”为近代物理实验的第一部分,为了理论课与实验课融合以及近代物理实验改革,我院做出了同步安排,但实验课教师通常仅简单地向学生说明实验原理,主要侧重于实验步骤和实验仪器的操作使用,对此我们让原子物理课程团队成员担任实验课教学的教师参与到近代物理实验的教学中,将近代物理实验作为专业基础理论课在实验方面的延伸,让实验与专业基础知识紧密联系,取得了很好的教学效果。另外,我们还告诉学生随着科学技术的发展和光谱仪分辨率的提高,在实验中又观察到了新的实验现象(例如氢光谱的精细结构),这些实验结果和哪些原有理论相矛盾,必须引进哪些新的概念和模型,进而拓展原子理论。迈克尔逊和莫雷在1896年就发现氢原子光谱巴耳末系的第一条谱线(Hα)是双线,后来在高分辨率光谱仪中呈现出三线。玻尔猜测这可能是由于电子在椭圆轨道上运动时作进动所引起的。索末菲便于1916年提出修正理论:一是把玻尔的圆形轨道推广为椭圆轨道,二是引入了相对论修正。定量计算出了三条Hα线,与实验完全符合。不过,这一“完全符合”纯粹是一种巧合。实际上,在高分辨率谱仪中,一条Hα线将呈现出七条精细结构谱线(兰姆移位)。对此,玻尔一索末菲模型就完全无能为力了。1926年海森伯运用量子力学对索末菲的修正进行了严格推导,1928年狄喇克的相对论量子力学自然地计入了电子的自旋,并依此算出电子的自旋与轨道相互作用,玻尔的理论才得到升华。另外,兰姆移位和反常电子磁矩的实验发现,导致了量子电动力学的蓬勃发展。
三、塞曼效应与磁相互作用
塞曼效应实验是近代物理实验中非常著名的一个经典实验,是继法拉第1845年发现旋光效应,克尔1875年发现电光效应和1876年发现磁光效应之后,由荷兰物理学家塞曼于1896年发现的又一个磁光效应,在原子物理和量子理论的发展中(原子结构、泡利原理、电子自旋、发光机制等)具有非常重要的地位。它不仅证实了原子具有磁矩和和在磁场空间取向量子化,而且通过它能测定电子的荷质比和g因子的数值,在历史上引发和推动了量子理论的发展,至今它仍然是研究原子内部能级结构的重要方法之一。因此,在原子物理和量子理论课程中,塞曼效应的原理和现象是教学的重点,也是近代物理实验中必做的实验项目,经常会出现在各种物理竞赛中。