陈朝辉,张 韦,李泽宏,孔孟茜,潘明章
柴油机CDPF被动再生特性及机理分析
陈朝辉1,张 韦1※,李泽宏1,孔孟茜1,潘明章2
(1. 昆明理工大学交通工程学院,云南省内燃机重点实验室,昆明 650500;2.广西大学机械工程学院,南宁,530004)
为了探究CDPF(catalyzed diesel particulate filter)的再生性能及再生机理,该文利用发动机试验台,分别对催化剂负载量为0、530和636 g/m3的3组CDPF开展耐久循环工况下的再生特性试验研究。试验结果表明,测试过程中被动再生消耗NO2,530 g/m3CDPF(CDPF1)在大负荷工况下,后端NO2浓度低于前端,随着催化剂负载量增加,636 g/m3CDPF(CDPF2)的后端NO2浓度高于前端。在耐久循环的首个3 000r/min、100%负荷工况时,CDPF1与CDPF2的排气压降比DPF(diesel particulate filter)低约14 kPa。耐久循环测试中,CDPF1的再生效率为87.5%,CDPF2的再生效率达到93.1%。利用量子化学密度泛函理论DFT(density functional theory),构建了组成Soot的大分子菲与NO2,在Pt(111)晶面氧化为CO和CO2的反应模型。通过DFT计算呈现NO2的N=O化学键断裂、解离产生的活性氧O与菲基的1号C在Pt晶面滑移并结合的反应历程。利用DFT计算得到的化学反应动力学参数,对CDPF1进行再生过程的一维仿真计算,排气压降的模拟值与试验值误差范围在3%以内。研究结果可为提高CDPF再生效率提供理论依据与工程指导。
柴油机;催化剂;燃烧;再生过程;再生机理;CDPF;密度泛函理论
柴油机具备动力性强、经济性好和热效率高等优点,被广泛应用于以农业机械和工程机械为代表的非道路移动机械。但由于柴油机的PM排放较高,且非道路移动机械的保有量逐年持续增加,PM排放问题日益突出。而DPF(diesel particulate filter)可有效捕集与去除PM,而要维持DPF的持续、高效捕集,需对DPF内的碳烟进行适时再生。在发动机排气后处理系统中,应用最多的再生方式主要包括基于排气热管理的主动再生[1],和涂覆催化剂的被动再生[2]。主动再生需要采用额外的燃料进行缸内后喷或尾管喷射,这既会引起燃油消耗的增加,同时在燃料燃烧及碳烟燃烧的双重放热下,易于引起DPF载体热负荷过高,峰值温度甚至超过1 000 ℃[3-4]。被动催化再生无需额外能耗,且再生过程中载体的热负荷较小[5-6],是氧化去除碳烟的最常用方式。
目前,Pt、Pd等贵金属广泛应用在CDPF(catalyzed diesel particulate filter)中,用于碳烟的被动再生[7-8]。这是由于贵金属能将发动机排气内的NO氧化为NO2,NO2较O2更易于解离产生活性氧O[9-10],因而其具有更强的碳烟氧化活性。当前大量文献分别从发动机的排气特性[11-12]、CDPF的载体结构[13-15]、初始碳载量[16-17]、NO2/Soot质量比[18-19]等方面,开展了被动再生过程中CDPF压降变化的研究。也有部分学者[20-22]从宏观化学反应动力学的角度,对Soot的氧化特性开展了研究。由于柴油机燃烧过程中形成的多环芳烃PAHs是碳烟的前驱物[23],宏观化学反应动力学计算并不能详细展示Soot的氧化过程。Hauptmann[24]提出运用微观反应动力学理论解释Soot的氧化历程。量子力学原理的密度泛函理论(density functional theory,DFT),根据电子的密度分布,能计算并反映由电子和原子核构成的多粒子体系的微观运动规律[25-26],运用该理论能研究PAHs与NO2相互反应的成键规律与反应历程。文献[27-28]利用DFT分析了以芘为代表的PAHs在没有催化剂的条件下的氧化路径,不能反应Soot中的活性碳以及活性氧等成分,在CDPF催化剂晶面的吸附、运动、解离及相互结合等微观反应过程。通过以上分析可知,将CDPF的发动机台架测试与Soot-NO2的微观反应DFT计算相结合,既能从宏观角度揭示碳烟的被动再生特性,也能从微观方面反映Soot的被动再生过程。
本论文基于发动机台架试验,测试DOC+DPF/CDPF对碳烟被动再生的影响,并结合DFT计算方法,研究Soot-NO2吸附在贵金属催化剂表面、Soot活性位与NO2解离的活性氧O相互结合生成CO与CO2的反应历程。以期为提高CDPF再生效率提供理论依据与工程指导。
本文以D30TCI型四缸直列高压共轨柴油机为研究对象,加装后处理系统的发动机测试台架如图1所示,发动机的主要技术参数见表1。试验所采用的DPF/CDPF载体直径为144 mm,长度为152 mm,DOC(diesel oxidation catalyst)直径为151 mm,长度为150 mm。DOC与CDPF负载的贵金属Pt与Pd的配比均为5:1,CDPF1的催化剂负载为530 g/m3,CDPF2的催化负载为636 g/m3,DOC的催化负载则为882 g/m3。试验过程中使用均为规格相同的DOC,为了标示区别,加装在CDPF1前端称为DOC1,加装在CDPF2前端称为DOC2。
注:P1、P2为DPF/CDPF的前、后端压力,kPa;T1、T2为DPF/CDPF的前、后端温度,℃。
表1 D30TCI柴油机的主要技术参数
发动机台架耐久测试试验方案如图2所示,整个试验过程由4个步骤组成:1)用精密电子天平称取未加碳烟的DPF/CDPF载体质量,并在发动机3 000 r/min、100%负荷工况下,测试DPF/CDPF未加载碳烟的压降;2)由于D30TCI发动机在1 200 r/min、100%负荷工况下的碳烟排放较高,所以选择该工况进行第1次快速积碳(称为积碳1,目的在于使随后将要进行的耐久测试过程中,有一定量的积碳可进行被动再生)。积碳时长20 min,积碳1完成后,调整发动机至3 000 r/min、100%负荷工况,进行第1次积碳后的压降测评,完成压降评价后称取积碳质量;3)根据GB-20890-2007重型汽车排气污染物排放控制系统耐久性要求及试验方法,进行不同工况下的耐久循环发动机后处理台架测试,耐久循环测试工况如表2所示。1个测试循环历时5 h,折算为车辆在实际道路行驶800 km,在每个耐久测试循环结束后,调整发动机至3 000 r/min、100%负荷工况进行压降评价,完成压降评价后称取碳烟质量;4)调整发动机至1 200 r/min、100%负荷工况,持续运行20 min,进行第2次快速积碳(称为积碳2,目的在于评价DPF/CDPF的碳烟捕集量与捕集效率),积碳结束后,进行3 000 r/min、100%负荷工况的压降评价,最后称得积碳质量。
图2 发动机被动再生耐久测试台架试验方案
表2 发动机台架耐久循环测试工况
图3为DPF/CDPF1/CDPF2的2次积碳过程的压降曲线。由图3可知,在积碳1测试过程中,发动机加装3组后处理装置的排气背压基本一致,初始压降在3~6 kPa之间,1 200 s后的最终压降在6~8 kPa之间波动。由此可知,在1 200 r/min、100%负荷时的碳烟捕集速率大于氧化速率,后处理装置进行了有效的碳加载。经过5 h耐久测试循环后,DPF在积碳2的碳烟加载过程中,压降在8~10 kPa之间波动,与积碳1相比平均压降增加了28.6%。CDPF1经过1 200 s积碳2后,其最终压降比积碳1增加了约2 kPa;CDPF2经过积碳2后,最终压降与积碳1一致。由此可知,在耐久测试循环中,受发动机高温尾气的影响,DPF和CDPF中都进行了被动再生反应,去除了载体中的部分碳烟,但在催化剂的帮助下,CDPF能更有效地抑制由碳烟积累所引起的排气背压的提升。
注:运行工况为发动机转速1 200 r·min-1、100%负荷;DPF为催化剂负载量0 g/m3;CDPF1为催化剂负载量530 g/m3;CDPF2为催化剂负载量636 g/m3。
图4为耐久测试循环过程中DPF/CDPF两端的排气压降、温度及组分浓度变化曲线。图4a和4b为耐久循环过程中DPF/CDPF两端的压降与温度,可以看出,DPF两端的排气压降明显高于CDPF,而CDPF1与CDPF2的排气压降区别不大。运行在耐久循环的工况8时,由于CDPF入口温度达到500 ℃,CDPF内的碳烟具有较高的被动再生速率,因此,CDPF1与CDPF2的压降比DPF低了约14 kPa。在耐久循环的工况25时,CDPF与工况8的压降相差不大,而DPF则比工况8的压降减少了约8 kPa。这说明从工况8运行到工况25时,CDPF几乎能将捕集的碳烟完全氧化,虽然DPF没有涂覆催化剂,但由于运行在12、21、25这几个大负荷工况时,DPF的入口温度接近达到500 ℃,促使了碳烟的氧化再生。虽然再生过程中碳烟氧化会释放热量,但由于耐久循环前进行的积碳量较少,且碳化硅载体的导热系数高达14 W/m·K,这导致了在传热过程中损失了较多热量。因此,在耐久循环的大部分工况下,载体前后端的温度相差不大。
图4c与图4d为26个耐久循环工况下DPF及CDPF两端的NO与NO2浓度曲线,可以看出,当CDPF1处于15、16、17、19、20、21、24这几个工况时,由于缸内喷油量较大,并且发动机处于中、高转速时,其增压器处于高效率工作区域,因此进气较为充分,使缸内燃油的燃烧更加充分,燃烧室内温度及排气温度都相对较高,促使了CDPF内催化剂较为充分的起活,促进了被动再生的进行,引起CDPF后端的NO2浓度低于其前端浓度。而在其余低速、低负荷工况下,由于催化剂活性尚未完全激活,在被动再生无法充分进行的情况下,则出现CDPF后端的NO2浓度高于前端的情况。由于CDPF2较CDPF1具有更高的催化负载量,这促使CDPF2内的NO氧化产生了更高浓度的NO2,且NO2的氧化生成量高于被动再生的消耗量。因此,在耐久循环的所有26个工况,CDPF2的后端NO2浓度均高于前端。
图4 耐久循环测试过程中DPF/CDPF的排气参数
图5与表3为2次积碳量与耐久循环的碳烟再生量及再生效率,本文定义耐久循环过程碳烟的再生质量为1,第一次积碳的质量为,再生效率为,计算公式如式(1)。结合图5与表3可以看出,DPF第1次积碳量为19.3 g,由于DPF未涂覆催化剂,经过耐久循环后,碳烟再生质量为7.7 g,再生效率仅为39.9%。这是由于DPF只是在排气温度较高的工况下,才能使排气中的O2与NO2扩散到碳烟层表面,引起少量碳烟参与了氧化反应。在催化剂的作用下,CDPF内氧化产生了较高浓度的NO2,这不但降低了碳烟氧化的起燃温度,且NO2解离产生的活性氧,也有效提升了碳烟的氧化速率。因此,CDPF的再生效率较DPF大幅增加,CDPF1耐久循环的再生效率为87.5%,而CDPF2的再生效率则达到93.1%。由于积碳时CDPF内伴随有连续捕集与被动再生反应,因此,CDPF的两次积碳量都较DPF低,CDPF1的第2次积碳量比DPF少4.4 g,CDPF2的第2次积碳量则比DPF少8 g。
图5 积碳量与再生碳烟量
Fig.5 Mass of soot deposition and regeneration
表3 DPF/CDPF的被动再生效率
由于Ragini等[23]采用质谱结合高效液相色谱测试法,确认了柴油机排放的碳烟中有11种多环芳烃,其中3环与4环芳烃所占比重最大,测试结果表明,每克Soot中包含菲0.505 mmol、蒽0.431 mmol、芘0.396 mmol。因此,本文选取Soot中含量最高的菲作为研究对象,菲基的结构简式如图6所示,定义1号碳为表面活性位C,分析1号C在贵金属晶面的氧化过程。基于量子化学DFT(density functional theory)计算方法,构建Pt(111)晶面6×5×5的周期平板模型,在Pt的晶面顶层掺杂了Pd原子,Pt与Pd的掺杂比例为5:1。将反应物(菲基、NO2)以及氧化产物(CO、CO2、NO)吸附在Pt晶面,分别进行吸附构型的结构优化。根据反应物及产物的优化结构,搜索C在氧化过程中的过渡态,并分析C与NO2在Pt晶面的运动、解离及相互结合等微观过程。在过渡态的搜索过程中,运用式(2)~(4)得到C氧化的活化能E、指前因子、速率常数。
图6 菲基的结构简式及1号C的氧化构型简图
图7a为菲基与NO2在Pt(111)晶面反应生成CO与NO的历程,可以看出,菲基的所有C原子、NO2中的2个O原子,分别与表层的Pt、Pd原子产生了化学键。菲基的1号C被氧化为CO,由反应物演变到产物的最低能量路径上,处于能量极大值的中间态即为过渡态[29-30];NO2中的1号O原子在Pt(111)晶面不断滑移,N=O双键被逐渐拉长并断裂,从而解离产生了1号活性氧O;菲基的1号C与2号C产生的C=C双键、1号C与10号C产生的C-C单键均被拉长,化学键断裂后1号C从菲基中解离出来;解离的1号C与1号活性氧O在Pt晶面继续滑移并相互靠近,逐渐产生C-O单键最终生成了CO;CO的C原子分别与2个相邻的Pt原子以C-Pt化学键的形式吸附在Pt表面,NO2失去1号O原子后,形成N=O双键,NO中的N原子与1个Pt原子形成N-Pt化学键;菲基失去1号C原子后,邻位的2号与10号C结合形成C-C单键,生成5环芳烃,至此1号C被不完全氧化成CO。在反应温度为427~827 ℃时,C氧化为CO的活化能E为234 kJ/mol,反应速率系数为1.34×1018/s。
将菲基的1号C完全氧化为CO2,需要2个NO2分子各提供1个活性氧O,图7b即为菲基与2个NO2分子吸附在Pt(111)晶面的反应物、过渡态与产物构型。由图7b可知,菲基的所有C原子,2个NO2分子的O原子,分别吸附在Pt晶面的表层原子上。2个NO2分子各自解离产生了1个活性氧O,分别为O1和O2,这2个活性氧O与菲基的1号活性C,在晶面滑移并相互靠近,生成O=C=O化学键,反应结束后C与2个活性氧O结合产生了CO2。在上述反应过程中,C氧化为CO2的活化能E为218 kJ/mol,反应速率系数为5.63×1016/s。
图7 菲基在Pt(111)晶面的反应历程
为了验证DFT计算得到的化学反应速率系数的准确性,本文基于发动机耐久测试的CDPF1的物性参数,构建了CDPF1的一维模型。根据发动机在3 000 r/min、100%负荷工况下的排气参数,设置计算边界条件,排气质量流量为0.16 kg/s,排气温度为505 ℃,基于DFT计算得到图7中碳烟氧化的活化能与反应速率系数,开展CDPF1被动再生过程的一维仿真计算,获得CDPF1的排气压降。图8为CDPF1压降的一维仿真结果与试验数据对比,可以看出,模拟计算的压降最高值略高于试验值,计算值与试验值的误差范围在3%以内,验证了本文DFT计算结果的准确性。
注:计算工况为发动机转速3 000 r·min-1、100%负荷。
1)DPF与CDPF经过时长1 200 s的积碳,最终压降在6~8 kPa之间波动,在耐久循环工况测试过程中,CDPF1在大负荷工况时载体后端的NO2浓度低于前端,CDPF2在26个工况下后端的NO2浓度均高于前端。CDPF1与CDPF2的排气背压降别不大,运行在耐久循环的第1个3 000 r/min、100%负荷工况时,CDPF1比DPF的压降低约14 kPa,而运行在第2个3 000 r/min、100%负荷工况时,CDPF1比DPF的压降低约5 kPa。由于碳化硅载体具有较高导热系数,因此,大部分工况下载体前后端温度相差不大。CDPF1耐久循环的再生效率为87.5%,而CDPF2耐久循环的再生效率则达到93.1%。
2)利用量子化学密度泛函理论,计算菲基的1号C与NO2在Pt(111)晶面反应生成CO与CO2的反应历程;菲基的1号C与邻位碳形成的C=C双键、C-C单键逐渐被拉长产生活性碳C,NO2分子的一个O=N双键断裂产生活性氧O,活性碳C与1个活性氧O在Pt晶面滑移并相互靠近,产生了C-O单键,并最终生成了CO,活性碳C与2个活性氧O相互靠近产生了CO2。
3)活性碳C与NO2在Pt(111)晶面反应生成CO与CO2的反应过程中,C氧化为CO的活化能为234 kJ/mol,反应速率系数为1.34×1018/s。利用DFT计算得到的反应动力学参数,计算CDPF1被动再生过程中的排气压降,模拟值与试验值的误差范围在3%以内。
[1]张韦,陈朝辉,孔孟茜,等. 柴油机催化型颗粒捕集器喷油助燃再生特征[J]. 农业工程学报,2019,35(8):92-97.
Zhang Wei, Chen Zhaohui, Kong Mengxi, et al. Bench test of regeneration characteristics of catalyzed diesel particulate filter based on fuel injection combustion system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 38(8): 92-97. (in Chinese with English abstract)
[2]黄河,孙平,刘军恒,等. 纳米CeO2催化剂对柴油机碳烟颗粒和NO降低效果[J]. 农业工程学报,2017,33(2):54-59.
Huang He, Sun Ping, Liu Junheng, et al. Reducing soot and NO emission from diesel engine exhaust catalyzed by nano- CeO2[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 54-59. (in Chinese with English abstract)
[3]伏军,龚金科,左青松,等. 微粒捕集器喷油助燃再生喷油与补气的优化控制[J]. 农业工程学报,2012,28(17):11-16.
Fu Jun, Gong Jinke, Zuo Qingsong, et a1. Optimum control of fuel injection and air supply for burner-type diesel particulate filter regeneration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(17): 11-16. (in Chinese with English abstract)
[4]Meng Zhongwei, Zhang Jing, Chen Chao, et al. A numerical investigation of the diesel particle filter regeneration process under temperature pulse conditions[J]. Heat and Mass Transfer, 2017, 53(5): 1589-1602.
[5]Jiao Penghao, Li Zhijun, Shen Boxi, et al. Research of DPF regeneration with NOX-PM coupled chemical reaction[J].Applied Thermal Engineering, 2017(110): 737-745.
[6]Jeremy D Smith, Chris Ruehl, Mark Burnitzki, et al. Real-time particulate emissions rates from active and passive heavy-duty diesel particulate filter regeneration[J]. Science of the Total Environment, 2019(680) :132-139.
[7]Wei Yuechang, Wu Qiangqiang, Xiong Jing, et al. Efficient catalysts of supported Pt-Pd nanoparticles on 3D ordered macroporous TiO2for soot combustion: Synergic effect of Pt-Pd binary components[J]. Catalysis Today, 2019(327): 143-153.
[8]Tang Hailian, Su Yang, Guo Yalin, et al.Oxidative strong metal-support interactions (OMSI) of supported platinum- group metal catalysts[J].Chemical Science, 2018, 9(32): 6679-6684.
[9]Virginia Alcalde-Santiago, Arantxa Davó-Quiñonero, Dolores Lozano-Castelló, et al. On the soot combustion mechanism using 3DOM ceria catalysts[J].Applied Catalysis B: Environmental, 2018, 234: 187-197.
[10]Shuang Liu, Xiaodong Wu, Duan Weng, et al.Sulfation of Pt/Al2O3catalyst for soot oxidation: High utilization of NO2and oxidation of surface oxygenated complexes[J].Applied Catalysis B: Environmental, 2013, 138: 199-211.
[11]Oana Mihai, Marie Stenfeldt, Louise Olsson. The effect of changing the gas composition on soot oxidation over DPF and SCR-coated filters[J]. Catalysis Today, 2018, 306: 243-250.
[12]王建,曹政,张多军,等. 基于DPF主动再生温度需求的柴油机进气节流控制策略[J]. 农业工程学报,2018,34(2):32-37.
Wang Jan, Cao Zheng, Zhang Duojun, et al. Intake throttling control strategy based on DPF active regeneration temperature for diesel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 32-37. (in Chinese with English abstract)
[13]Deng Yuanwang, Zheng Wenping, E Jiaqiang, et al.Influence of geometric characteristics of a diesel particulate filter on its behavior in equilibrium state[J].Applied Thermal Engineering, 2017(123): 61-73.
[14]Marek Václavík, Marie Plachá, Petr Kočí, et al. Structure characterisation of catalytic particulate filters for automotive exhaust gas aftertreatment[J]. Materials Characterization, 2017(134): 311-318.
[15]José Ramón Serrano, Vicente Bermúdez, Pedro Piqueras, et al.On the impact of DPF downsizing and cellular geometry on filtration efficiency in pre- and post-turbine placement[J]. Journal of Aerosol Science, 2017(113): 20-35.
[16]Bai Shuzhan, Tang Jiao, Wang Guihua, et al. Soot loading estimation model and passive regeneration characteristics of DPF system for heavy-duty engine[J]. Applied Thermal Engineering, 2016(100): 1292-1298.
[17]Chen Tao, Wu Zhixin, Gong Jinke, et al. Numerical simulation of diesel particulate filter regeneration considering ash deposit[J]. Flow Turbulence and Combustion, 2016, 97(3): 849-864.
[18]Soheil Soltani, Ronnie Andersson, Bengt Andersson. The effect of exhaust gas composition on the kinetics of soot oxidation and diesel particulate filter regeneration[J].Fuel, 2018, 220: 453-463.
[19]Madhu Singh, Mek Srilomsak, Yujun Wang, et al.Nanostructure changes in diesel soot during NO2–O2oxidation under diesel particulate filter-like conditions toward filter regeneration[J].International Journal of Engine Research, 2019, 20(8/9): 953-966.
[20]Schejbal M, Štěpánek J, Marek M, et al. Modelling of soot oxidation by NO2in various types of diesel particulate filters[J].Fuel, 2010, 89 (9): 2365-2375.
[21]Kyeong O Lee, Heeje Seong, Seung M Choi. Detailed analysis of kinetic reactions in soot oxidation by simulated diesel exhaust emissions[J]. Proceedings of the Combustion Institute, 2013(34): 3057-3065.
[22]Zhang Hailong, Yuan Shandong, Wang Jianli, et al. Effects of contact model and NOXon soot oxidation activity over Pt/MnOx-CeO2and the reaction mechanisms. Chemical Engineering Journal, 2017(327): 1066-1076.
[23]Ragini Ramdas, Ewa Nowicka, Robert Jenkins, et al.Using real particulate matter to evaluate combustion catalysts for direct regeneration of diesel soot filters[J]. Applied Catalysis B: Environmental, 2015(176): 436-443.
[24]Hauptmann W, Votsmeier M, Gieshoff J, et al. Inverse hysteresis during the NO oxidation on Pt under lean conditions[J]. Applied Catalysis B: Environmental, 2009, 93(1/2): 22-29.
[25]Gräfenstein J, Hjerpe A M, Elfi Kraka A, et al. An accurate description of the bergman reaction using restricted and unrestricted DFT: Stability test, spin density, and on-top pair density[J]. Journal of Physical Chemistry A, 2000, 104(8): 1748-1761.
[26]Zhang Minhua, Wu Yufei, Dou Maobin, et al.A DFT Study of Methanol Synthesis from CO2Hydrogenation on the Pd(111) Surface[J].Catalysis Letters, 2018, 148 (9): 2935-2944.
[27]Abhijeet Raj, Gabriel Robert da Silva, Suk Ho Chung. Reaction mechanism for the free-edge oxidation of soot by O2[J]. Combustion and Flame, 2012, 159 (11): 3423-3436.
[28]Peng Liu, Zepeng Li, William L Roberts. The growth of PAHs and soot in the post-flame region[J]. Proceedings of the Combustion Institute, 2019, 37 (1): 977-984.
[29]David E. Edwards, Dmitry Yu. Zubarev, William A. Lester, et al.Pathways to Soot Oxidation: Reaction of OH with Phenanthrene Radicals[J].The Journal of Physical Chemistry A, 2014, 118 (37): 8606-8613.
[30]Özlem Yönder, Christof Hättig. Density functional theory study of CO formation through reactions of polycyclic aromatic hydrocarbons with atomic oxygen (O(3P))[J]. Fuel, 2019(241): 851-860.
Passive regeneration characteristics and mechanism of CDPF for diesel engine
Chen Zhaohui1, Zhang Wei1※, Li Zehong1, Kong Mengxi1, Pan Mingzhang2
(1.,,,650500,; 2.,,530004,)
To explore the regeneration performance and mechanism of the catalyzed diesel particulate filter (CDPF), an engine bench test was carried out to study the regeneration characteristics for three groups of CDPFs with catalyst loading of 0, 530(CDPF1) and 636 g/m3(CDPF2)under endurance cycle conditions in this paper. The endurance cycle tests consist of 26 operating conditions, and each test cycle lasted 5 hours, which equivalent to the vehicle traveling 800 km on the actual road. The test results showed that exhaust pressure drop across CDPF during the test was significantly lower than that of DPF. When the inlet temperature reaches 500 ℃, the pressure drop between CDPF1 and CDPF2 was about 14 kPa lower than that of DPF. From the 8th operating condition of endurance cycle to the 25th, CDPF could almost completely oxidize the trapped soot. Passive regeneration consumes NO2, and the NOxconcentration of CDPF1 with 530 g/m3catalyst loading was lower than that of the front end under heavy load conditions. The CDPF2 with 636 g/m3catalyst loading produced higher concentration of NO2with the increase of catalyst loading, and generated amounts of oxidation components were higher than consumed amounts of passive regeneration. Therefore, regeneration efficiency of CDPF was greatly increased compared with DPF, the regeneration efficiency for endurance cycle of CDPF1 was 87.5%, and that of the CDPF2 was 93.1%. Because the soot emitted by diesel engines have 11 kinds of polycyclic aromatic hydrocarbons, and phenanthrene is composed of 3 ring aromatics accounts for the largest proportion, so the density functional theory (DFT) in quantum chemistry was used to construct the oxidation reaction model of phenanthrene and NO2to produce CO and CO2on the Pt (111) crystal plane in the paper. DFT calculation results showed that O1atom in NO2was continuously slipped on the Pt(111) crystal plane, and chemical double bond of the N=O was gradually elongated and broken, and dissociated produced the active oxygen O1. The C=C double bond was produced by C1and C2atoms of phenanthrene radical, and the C-C single bond was elongated between C1and C10atoms. The C1atom was dissociated from phenanthrene radical after C-C bond was broken. The dissociated C1and active O1atoms continued to slip on Pt crystal plane and approach each other, gradually producing a C-O single bond and finally generating CO molecule. The activation energyof C1atomoxidized to CO was 234 kJ/mol, and reaction rate coefficient was 1.34×1018/s. When the C1atom was completely oxidized to CO2, two NO2molecules were required to dissociate, and produces two active O atoms which were O1and O2, respectively. These two active O and C1atoms were slipped on Pt crystal plane, and were close to each other to generate O=C=O chemical bond. The activation energ of C1atom oxidized to CO2was 218 kJ/mol, and reaction rate coefficient was 5.63×1016/s. Based on chemical reaction kinetic parameters calculated by DFT, a one-dimensional regeneration model of CDPF1 was constructed to calculate the exhaust pressure drop during passive regeneration, and the error range between simulation value and test value was within 3%. This also verified the accuracy of DFT calculation results. The study of combining engine bench test with DFT calculation of Soot-NO2reactions, which was not only reveals passive regeneration characteristics of soot from a macroscopic perspective, but also reflected passive regeneration process of soot from a microscopic perspective. This study can provide theoretical basis and engineering guidance for improvement of CDPF regeneration efficiency.
diesel engine; catalyst; combustion; regeneration process; regeneration mechanism; CDPF; density functional theory
陈朝辉,张 韦,李泽宏,孔孟茜,潘明章. 柴油机CDPF被动再生特性及机理分析[J]. 农业工程学报,2019,35(23):80-86.doi:10.11975/j.issn.1002-6819.2019.23.010 http://www.tcsae.org
Chen Zhaohui, Zhang Wei, Li Zehong, Kong Mengxi, Pan Mingzhang. Passive regeneration characteristics and mechanism of CDPF for diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 80-86. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.23.010 http://www.tcsae.org
2019-08-21
2010-11-01
国家自然科学基金资助项目(51666007;51665023;51865002)
陈朝辉,博士,副教授,主要从事内燃机燃烧与排放控制研究。Email:chenzhaohuiok@sina.com
张 韦,博士后,教授,主要从事内燃机燃烧与排放控制研究,Email:koko_575@aliyun.com
10.11975/j.issn.1002-6819.2019.23.010
TK411+.5
A
1002-6819(2019)-23-0080-07