江苏苏州国际外语学校(215131)
求稍复杂的阴影部分的面积,是小学“图形与几何”的重点和难点。解决这类问题关键在于因题制宜,将一般图形转化为特殊图形。常用方法有以下五种。
切割填补法是通过观察阴影部分与整体图形之间的关系,添加辅助线,切割某个部分填补整体,从而使不规则图形变为规则图形。这一方法最为常用、最具代表性,也最为简单有效。
【例1】如图1,四分之一圆的半径为10厘米,以它的两条半径为直径,在内部作两个半圆,求阴影部分的面积。
分析:图1中的阴影部分比较规则,观察它的特征,发现通过添加辅助线进行切割,再整体填补,图1的阴影部分就转化为图2中的阴影部分,所以所求阴影部分的面积实际就是等腰直角三角形(如图2阴影部分)的面积:S=10×10÷2=50(平方厘米)。
图1
图2
对于比较规则的图形,用切割填补法虽然也能解决问题,但是却大费周折、浪费时间。这时运用容斥原理法,可以省时省力,事半功倍。
【例2】如图3,正方形的边长为8厘米,求图中阴影部分的面积。
图3
分析:图3是正方形中套着四个半圆,四个半圆相加就得到2个完整的圆,在这个过程中每个阴影部分被加了两次,减去一个正方形,正好得到阴影部分的面积,那么阴影部分的面积就是S=3.14×4×4×2-8×8=36.48(平方厘米)。
【例3】求图4阴影部分的面积。(单位:厘米)
图4
分析:图4是由直径为6厘米和8厘米的两个半圆和一个直角三角形组成的,单独求阴影部分面积比较困难。认真观察图形后发现,阴影部分的面积等于直径是6厘米和8厘米的两个半圆加一个直角三角形的面积减去直径是10厘米的大半圆的面积,即S=3.14×(3×3+4×4)÷2+6×8÷2-3.14×5×5÷2=24(平方厘米)。
这个方法与切割填补法类似,都是在忠于题意的前提下实现对图形的转化,通过点的移动,改变原有图形的形状,但是阴影部分的面积却不变,实现的是等积变换。
图5
【例4】如图5,已知一大一小两个正方形拼凑在一起,大正方形的边长为8厘米,求阴影部分的面积。
图6
分析:题目并没有告知小正方形的边长,因此要想方设法将所求阴影部分转化到大正方形中,如图6。连接AB,得AB∥CD,因此点A和点B到CD的距离相等,得,即原来的阴影部分的面积总和保持不变。(平方厘米)。
【例5】如图7,求阴影部分的面积。(单位:厘米)
图7
分析:图中阴影部分是一个梯形,它的上底、下底和高都不知道,显然无法直接求出它的面积。因此,要想方设法将其转化为求另一个图形的面积。观察可知,平行四边形BCDG的面积等于长方形ABCE的面积(等底等高),两者都减去同一个三角形BCF,所以阴影部分的面积等于梯形ABFE的面积(如图8),即S=(2+6)×4÷2=16(平方厘米)。
图8
一些图形的阴影部分比较杂乱分散,看似毫无章法,但是进行适当旋转、移动后重新组合在一起,就可以得到一个较为简单的新图形。
【例6】如图9,已知大圆的半径等于小圆的直径,大圆的半径为4厘米,求阴影部分的面积。
图9
图10
图11
分析:图9中阴影部分分为三小块,分别求出各部分的面积再相加非常困难。仔细观察发现,可以将图形旋转拼凑为图10,阴影部分形如一个“逗号”,而整个大圆可以分成四个“逗号”(如图11),那么阴影部分的面积就是整个大圆的,即(平方厘米)。
【例7】一张斜边长为30厘米的红色直角三角形纸片和一张斜边为50厘米的蓝色直角三角形纸片以及一张黄色正方形纸片,拼成了一个大直角三角形(如图12)。红、蓝两张纸片的面积和为多少?
图12
图13
分析:要求红、蓝两张三角形纸片的面积之和,却不知道高,很难分别求出面积,因此想办法将它们合并在一起。因为黄色纸片为正方形,边长相等,所以将红色三角形旋转至图13。因为∠A+∠C=90°,所以三角形ABC为直角三角形,所以红色三角形与蓝色三角形的面积之和即为直角边分别是50厘米和30厘米的三角形ABC的面积,所以红、蓝两张纸片的面积和为S=50×30÷2=750(平方厘米)。
由于已知条件的限制,直接求解较难,又不能对图形进行旋转移动或割补填充时,可以尝试将图形重新构造成一个容易求解的图形。
【例8】如图14,AB=8厘米,CD=3厘米,∠B=45°,这个四边形的面积是多少平方厘米?
图14
分析:∠A=90°,∠B=45°,充分利用已知条件,构造出一个等腰直角三角形(如图15),此时解题思路显而易见。AB=AE=8厘米,CD=CE=3厘米,四边形ABCD的面积为S=S△ABE-S△CDE=8×8÷2-3×3÷2=27.5(平方厘米)。
图15
【例9】如图16,直角三角形ABC中,AD=15厘米,CE=5厘米,求阴影部分的面积。
图16
图17
分析:根据已知条件很难直接求解,不妨以退为进,重新构造出一个方便计算的长方形(如图17)。因为,所以平方厘米)。
当然,解决问题时不应孤立或生搬硬套地使用上述方法,而应通过观察与思考,根据实际情况综合、灵活地运用上述方法,从而提高解题效率。