丁鸭锁 尹春 高广忠 鲁峻 张勤 孙兵
[摘要] 目的 探討CYP2C19基因多态性与氯吡咯雷二磷酸腺苷(ADP)抑制率之间的关系。 方法 选取南通大学附属泰州市人民医院神经外科2014年7月~2017年7月颅内宽颈动脉瘤并行支架辅助弹簧圈栓塞的患者63例,均行常规双抗治疗,为阿司匹林100 mg及氯吡格雷75 mg每天口服。利用专用试剂盒测定CYP2C19基因型。本试验中共检测6种亚型(CYP2C19*1/*1(636GG,681GG),CYP2C19*1/*2(636GG,681GA),CYP2C19*2/*2(636GG,681AA),CYP2C19*1/*3(636GA,681GG),CYP2C19*2/*3(636GA,681GA),CYP2C19*3/*3(636AA,681GG)。将6种CYP2C19基因亚型分为快代谢组[CYP2C19*1/*1(636GG,681GG)]、中快代谢组[CYP2C19*1/*2(636GG,681GA),CYP2C19*1/*3(636GA,681GG)]和慢代谢组[CYP2C19*2/*2(636GG,681AA),CYP2C19*2/*3(636GA,681GA),CYP2C19*3/*3(636AA,681GG)]。利用双抗血小板图测定氯吡格雷对血小板的抑制率(ADP抑制率)。 结果 6种CYP2C19基因亚型中,CYP2C19*1/*1和CYP2C19*1/*2为主要基因型,占比分别为63.5%和19.0%。其中快代谢组有40例(63.5%),中快代谢组12例(19.0%)及慢代谢组11例(17.5%);将快代谢组与慢代谢组两组ADP抑制率进行比较,差异无统计学意义(P > 0.05)。 结论 通过检测CYP2C19基因型来调整宽颈动脉瘤支架术后的患者氯吡格雷的用量,意义不大,需要通过其他的指标来监测血小板的抑制情况。
[关键词] CYP2C19基因;氯吡格雷;二磷酸腺苷抑制率
[中图分类号] R541.4 [文献标识码] A [文章编号] 1673-7210(2018)09(b)-0018-04
[Abstract] Objective To explore the relationship between CYP2C19 Genetic Polymorphism and Clopidogrel in antiplatelet. Methods A total of 63 wide-necked intracranial aneurysm patients after stent-assist coiling embolization in the Neurosurgery Department of Jiangsu Taizhou People's Hospital of Nantong University were included in the study who took Clopidogrel (75 mg/d) and Aspirin (100 mg/d) orally. Gene chip kits were applied to test CYP2C19 gene types. In this research, six gene sub-types were tested(CYP2C19*1/*1 (636GG, 681GG), CYP2C19*1/*2 (636GG, 681GA), CYP2C19*2/*2 (636GG, 681AA), CYP2C19*1/*3 (636GA, 681GG), CYP2C19*2/*3 (636GA, 681GA), CYP2C19*3/*3 (636AA, 681GG). And they were divided into three subgroups based on the metabolic rate. CYP2C19*1/*1 (636GG, 681GG) was in the rapid subgroup. CYP2C19*1/*2 (636GG, 681GA) and CYP2C19*1/*3 (636GA, 681GG) were in the moderate subgroup. CYP2C19*2/*2 (636GG, 681AA), CYP2C19*2/*3 (636GA, 681GA) and CYP2C19*3/*3 (636AA, 681GG) were in the slow subgroup. Thrombelastograms were used to test the inhibition rate of platelet. Results CYP2C19*1/*1 and CYP2C19*1/*2 were the main gene sub-types, occupied 63.5% and 19.0% separately. There were 40 cases in rapid subgroup(63.5%), 12 cases in moderate subgroup (19.0%) and 11 cases in slow subgroup (17.5%). There was no statistical difference in the inhibition rate of ADP between rapid subgroup and slow subgroup (P > 0.05). Conclusion It is of little significance to adjust the amount of Clopidogrel in patients with wide-necked aneurysm stent after detecting genetype. Other indicators are needed to monitor the inhibition of plateles.
[Key words] CYP2C19 genetype; Clopidogrel; Inhibition of ADP
介入栓塞术已成为颅内动脉瘤的重要治疗手段,对于宽颈动脉瘤,除了使用弹簧圈栓塞外,往往需要支架辅助。目前常用的抗血小板方案是氯吡格雷加阿司匹林的双抗疗法。然而,氯吡格雷的抗血小板作用存在一定的个体差异,部分患者存在氯吡格雷抵抗现象,这部分人群会出现较高概率的血栓事件。发生氯吡格雷抵抗的原因有多种,基因多态性被认为是重要因素。由于从基因型到最终的蛋白表达,有多个调控环节参与其中,基因型是否和最终的血小板抵抗现象存在某种对应关系目前尚无定论,本研究将针对这个问题进行探讨。
1 对象与方法
1.1 研究对象
选择2014年7月~2017年7月在南通大学附属泰州市人民医院(以下简称“我院”)神经外科诊断为颅内宽颈动脉瘤并行支架辅助弹簧圈栓塞的63例患者。所有患者均行常规双抗治疗。患者年龄29~81岁,平均(48.0±8.9)岁;女36例,男27例。本研究经我院医学伦理委员会的批准,所有患者或家属均知情、同意,并签署知情同意书。
1.2 纳入及排除标准
纳入标准:①确诊为颅内宽颈动脉瘤;②宽颈动脉瘤为瘤颈≥4 mm,或瘤颈比≤1∶5;③血小板计数>70×109/L。排除标准:①严重肾功能不全;②合并其他脏器近期出血,如眼底出血等。
1.3 研究方法
患者每天口服氯吡格雷75 mg(生产厂家:赛诺菲-安万特股份有限公司;生产批号:J20130083)及阿司匹林100 mg(企业名称:拜耳医药保健有限公司;生产批号:J20130078),第7天时抽取静脉血,使用双抗血小板图检测血小板二磷酸腺苷(adenosine diphosphate,ADP)抑制率,并抽取静脉血1 mL进行CYP2C19的基因检测。
1.4 血小板抑制率的测定
使用血栓弹力图(thromboelas-tography,TEG)YZ5000型(陕西裕泽毅医疗科技有限公司)。试剂包括高岭土、氯化钙、激活剂A和ADP(2 μmol/L),通过软件计算出氯吡格雷对血小板ADP的抑制率。
1.5 CYP2C19基因检测
使用苏州旷远生物分子技术有限公司生产的人CYP2C19基因分型检测试剂盒。根据说明书指示提取外周血中的脱氧核糖核酸(deoxyribonucleic acid,DNA),使用含有基因探针的基因芯片进行特异性杂交,测定患者基因中的信息,确定基因型。本研究中检测的基因型有CYP2C19*1/*1(636GG,681GG),CYP2C19*1/*2(636GG,681GA),CYP2C19*2/*2(636GG,681AA),CYP2C19*1/*3(636GA,681GG),CYP2C19*2/*3(636GA,681GA),CYP2C19*3/*3(636AA,681GG)。
1.6 分组方法
将6种CYP2C19基因亚型分为快代谢组[CYP2C19*1/*1(636GG,681GG)]、中快代谢组[CYP2C19*1/*2(636GG,681GA),CYP2C19*1/*3(636GA,681GG)]和慢代谢组[CYP2C19*2/*2(636GG,681AA),CYP2C19*2/*3(636GA,681GA),CYP2C19*3/*3(636AA,681GG)]。为了使比较结果更加明显,本研究只比较快代谢组和慢代谢组基因型对血小板ADP的抑制率。
1.7 统计学方法
采用SPSS 18.0统计学软件进行数据分析,计量资料用均数±标准差(x±s)表示,两组间比较采用t检验,以P < 0.05为差异有统计学意义。
2 结果
本研究患者基因型以CYP2C19*1/*2,CYP2C19*1/*1为主,分別占21.2%和69.3%。见表1。CYP2C19基因型改变引起酶代谢活性的不同,使不同的患者对氯吡格雷代谢的反应呈现3种情况:快代谢[CYP2C19*1/*1(636GG,681GG)]、中快代谢[CYP2C19*1/*2(636GG,681GA),CYP2C19*1/*3(636GA,681GG)]和慢代谢[CYP2C19*2/*2(636GG,681AA),CYP2C19*2/*3(636GA,681GA),CYP2C19*3/*3(636AA,681GG)]。快代谢型有40例,占比63.5%;中代谢型有12例,占比19.0%;慢代谢型有11例,占比17.5%。快代谢组和慢代谢组基因型对血小板ADP抑制率比较,差异无统计学意义(P > 0.05)。见表2。
3 讨论
支架辅助技术在给患者带来微创和快速康复的同时,也给抗血小板治疗提出了新的要求。抗血小板不足会导致血栓事件,甚至大面积脑梗死,造成严重后果;抗血小板过量会导致颅内或内脏出血,也会造成严重后果[1-2]。目前,抗血小板采取的是阿司匹林联合氯吡格雷的统一方案,而个体差异的存在导致了患者对抗血小板药物的敏感性存在差异,其原因被归为“氯吡格雷抵抗”[3-4]。在临床工作中,医生希望能在治疗前了解患者是否存在氯吡格雷抵抗,而不是服用药物后再检测血小板的功能。比如,支架植入手术则希望能在支架植入之前就知道结果,可以通过调整剂量和更换药物的方式,防止术后出现因为血小板抑制不足导致的血栓事件。CYP2C19基因检测被认为是一种很好的方法[5]。
在氯吡格雷抵抗的各种机制中,遗传因素被认为是重要的一部分。细胞色素P450同工酶中的CYP2C19在氯吡咯雷的代谢中起了重要作用[6]。根据等位子的变异,可将CYP2C19的基因型分为六型CYP2C19*1/*1(636GG,681GG),CYP2C19*1/*2(636GG,681GA),CYP2C19*2/*2(636GG,681AA),CYP2C19*1/*3(636GA,681GG),CYP2C19*2/*3(636GA,681GA),CYP2C19*3/*3(636AA,681GG)[7]。其中CYP2C19*1/*1(636GG,681GG)被称为快代谢型,CYP2C19*1/*2(636GG,681GA)、CYP2C19*1/*3(636GA,681GG)为中快代谢型,剩余的3种为慢代谢型[8]。快代谢型能将氯吡格雷及时转化为可以抑制血小板的中间产物,而慢代谢型则不能将氯吡格雷快速转化,效果不佳。本研究中快代谢型40例,占比63.5%;中代谢型12例,占比19.0%;慢代谢型11例,占比17.5%,这与文献报道结果类似[9]。
從基因型到最终的蛋白表达,有多个调控环节参与其中[10]。基因型是否和最终的血小板抵抗现象存在某种关系,对用药是否存在指导价值,目前尚无定论[11]。本研究除了检测样本的CYP2C19的基因型之外,还通过血栓弹力图测定氯吡格雷对血小板ADP的抑制率,探讨氯吡格雷抵抗与CYP2C19基因多态性之间的关系。本研究发现此样本中绝大多数患者对氯吡格雷呈现快代谢型,说明对氯吡格雷敏感,治疗效果较好。以往研究发现亚洲人群中几乎100%的弱代谢归因于CYP2C19*2和CYP2C19*3所编码功能缺陷等位基因[12]。这部分人群再发缺血事件比无此基因携带者再发缺血事件高3.58倍。氯吡格雷抵抗的患者CYP2C19*2、CYP2C19*3基因型更占优势,在一定程度上使氯吡格雷的反应性下降。Mohammad等[13]认为CYP2C19可以作为心脏冠脉支架术后不良预后的独立预测因素。Zhou等[3]发现中国人群中携带CYP2C19*2 or*3变异等位基因和患者氯吡格雷抵抗相关,并且血栓风险增加。也有研究[14]不支持CYP2C19基因多态性与氯吡格雷抵抗有关这一结论。Fontana等[15-16]研究显示,在心血管门诊患者中发现CYP2C19*2等位基因与氯吡咯雷抵抗没有相关性。Rodriguez等[17]认为CYP2C19的基因型和对氯吡格雷的临床反应无关。在本研究中快代谢组和慢代谢组对血小板ADP的抑制率差异无统计学意义,但本研究样本量较少,需要更大的样本量来验证。因此,CYP2C19基因的多态性对动脉瘤术后抗血小板效果的影响还需要进一步更大样本量的深入研究,而且也说明从基因到蛋白到最后的效应,中间调控的环节及参与的因子很多,让整个过程变得异常复杂[18]。
从本研究可以看出,对于宽颈动脉瘤支架术后的患者,通过检测CYP2C19基因型来提前调整氯吡格雷用量的做法,作用有限。如何提前确定患者是否存在血小板抵抗,这仍然是个亟待解决的临床问题,需要新的、敏感准确的检测指标,或者联合使用基因或非基因指标[19-20]。另外,血小板的抑制情况仍然需要监测,可以通过血栓弹力图等来实现。
[参考文献]
[1] Zhong X,Tong X,Ju Y,et al. Interpersonal factors in the pharmacokinetics and pharmacodynamics of voriconazole:are CYP2C19 genotypes enough for us to make a clinical decision? [J]. Curr Drug Metab,2017:56-59.
[2] Xi Z,Fang F,Wang J,et al. CYP2C19 genotype and adverse cardiovascular outcomes after stent implantation in clopidogrel-treated Asian populations:a systematic review and meta-analysis [J]. Platelets,2017(127):1-12.
[3] Zhuo ZL,Xian HP,Long Y,et al. Association between CYP2C19 and ABCB1 polymorphisms and clopidogrel resistance in clopidogrel-treated Chinese patients [J]. Anatol J Cardiol,2018,19(2):123-128.
[4] Guirgis M,Thompson P,Jansen S. Review of aspirin and clopidogrel resistance in peripheral arterial disease [J]. J Vasc Surg,2017,66(5):1576-1586.
[5] Zeb I,Krim N,Bella J. Role of CYP2C19 genotype testing in clinical use of clopidogrel:is it really useful ? [J]. Expert Rev Cardiovasc Ther,2018,16(5):369-377.
[6] Kim KA,Park PW,Hong SJ,et al. The effect of CYP2C19 polymorphism on the pharmacokinetics and pharmacodynamics of clopidogrel:a possible mechanism for clopidogrel resistance [J]. Clin Pharmacol Ther,2008,84(2):236-242.
[7] Wang XQ,Shen CL,Wang BN,et al. Genetic polymorphisms of CYP2C19 2 and ABCB1 C3435T affect the pharmacokinetic and pharmacodynamic responses to clopidogrel in 401 patients with acute coronary syndrome [J]. Gene,2015,558(2):200-207.
[8] Liu J,Nie XY,Zhang Y,et al. CYP2C19*2 and other allelic variants affecting platelet response to Clopidogrel tested by thrombelastography in patients with acute coronary syndrome [J]. Chin Med J (Engl),2015,128(16):2183-2188.
[9] Lin XB,Li ZW,Yan M,et al. Population pharmacokinetics of Voriconazole and CYP2C19 polymorphisms for optimizing dosing regimens in renal transplant recipients [J]. Br J Clin Pharmacol,2018,84(7):46-49.
[10] Hariharan S,Southworth MR,Madabushi R. Clopidogrel,CYP2C19 and proton pump inhibitors:what we know and what it means [J]. J Clin Pharmacol,2014,54(8):884-888.
[11] Tang XF,Han YL,Zhang JH,et al. CYP2C19 genotyping combined with on-clopidogrel platelet reactivity in predicting major adverse cardiovascular events in Chinese patients with percutaneous coronary intervention [J]. Thromb Res,2016,147(5):108-114.
[12] Xiao ZS,Goldstein JA,Xie HG,et al. Differences in the incidence of the CYP2C19 polymorphism affecting the S-mephenytoin phenotype in Chinese Han and Bai populations and identification of a new rare CYP2C19 mutant allele [J]. J Pharmacol Exp Ther,1997,281(1):604-609.
[13] Mohammad Fic AM,Al-Allawi NA. CYP2C19 genotype is an independent predictor of adverse cardiovascular outcome in Iraqi patients on Clopidogrel post percutaneous coronary intervention [J]. J Cardiovasc Pharmacol,2018,37(7):139-143.
[14] Lee CR,Sriramoju VB,Cervantes A,et al. Clinical outcomes and sustainability of using CYP2C19 genotype-guided antiplatelet therapy after percutaneous coronary intervention [J]. Circ Genom Precis Med,2018,11(4):e002069.
[15] Simon T,Verstuyft C,Mary-Krause M,et al. Genetic determinants of response to clopidogrel and cardiovascular events [J]. N Engl J Med,2009,360(4):363-375.
[16] Chen K,Zhang R,Liu H,et al. Impact of the CYP2C19 gene polymorphism on Clopidogrel personalized drug regimen and the clinical outcomes [J]. Clin Lab,2016,62(9):1773-1780.
[17] Rodriguez-Gonzalez F,Martinez-Quintana E,Saavedra P,et al. CYP2C19 or CYP3A5 genotyping does not predict clinical response to Clopidogrel [J]. J Clin Pharmacol,2018, 18(4):198-202.
[18] Tomek A,Mat'oska V,Frydmanova A,et al. Impact of CYP2C19 polymorphisms on clinical outcomes and antiplatelet potency of Clopidogrel in caucasian poststroke survivors [J]. Am J Ther,2018,25(2):e202-e212.
[19] Kiss AF,Vasko D,Deri MT,et al. Combination of CYP2C19 genotype with non-genetic factors evoking phenoconversion improves phenotype prediction [J]. Pharmacol Rep,2017,70(3):525-532.
[20] Wu Y,Zhou Y,Pan Y,et al. Impact of CYP2C19 polymorphism in prognosis of minor stroke or TIA patients with declined eGFR on dual antiplatelet therapy:CHANCE substudy [J]. Pharmacogenomics J,2018,11(2):45-49.
(收稿日期:2018-03-02 本文編辑:任 念)