探索学习单分层设计的有效策略

2018-12-18 13:06江苏南京市栖霞区炼油厂小学王佳佳
小学教学研究 2018年29期
关键词:梯子芬兰公式

江苏南京市栖霞区炼油厂小学 王佳佳

一、学习单的作用和价值

拉夫尔·泰勒曾说:“学生的学习取决于他自己想学什么,而不是教师要教什么。”而学生到底想学什么又取决于学生的学习欲望。学生的学习欲望有两大动力源:一是知识的神秘,使其好“问”;二是知识的实用,使其好“学”。朱永新教授认为,要想把学生引领到你需要的地方,你得知道学生现在在哪里。我们的学生不是一张白纸,数学教学须基于学生、为了学生,从学生已有的知识经验出发,通过层层深入来构建新知。那么,怎样才能了解到学生的已有经验呢?这时学生的自主探究和自主学习就显得尤为重要。联合国教科文组织曾提到:今后的文盲将不再是不识字的人,而是不会自学和学了知识不会应用的人。自主性学习不仅可以拓展学生学习的空间,拉长学生思考的时间,使学生不会空着脑袋进课堂,也可以使教师准确把握学生的认知起点,进行有针对性的教学。

我们应该如何让学生进行自主性学习呢?我们如果不提供任何自主性学习的材料,让学生自己根据教材来自学,会有什么样的效果呢?笔者就苏教版五年级上册《梯形的面积计算》进行了测试,从我们学校选择了两个班级(A班和B班)进行了测试,A班没有提供任何预习单,只是根据教材预习,B班提供了下面的预习单:

2.想一想,平行四边形的面积公式和三角形的面积公式我们怎样得到的?

3.你能想办法求出下面梯形的面积吗?(每个小方格表示1平方米)

4.从117页选两个梯形剪下来,把它们拼成平行四边形,求出拼成的平行四边形和每个梯形的面积,在通过交流完成下表。

?

A班学生自学课本后,出示第三题求梯形的面积这一题时,班级里有67%的学生直接用梯形的面积公式来解答,而B班学生在预习单的引导下,34%的学生是用公式解答的,而部分学生是转化成三角形和平行四边形来解决的,还有一部分学生根据预习单的引导转化成平行四边形来解答的,直接用公式的学生明显减少了,调查了那些用公式的学生发现,大多数学生不知道公式的由来,直接套用的原因是他们在预习时发现书上有公式,所以就直接用了。针对这样的调查,我们发现:学生自学时会出现只关注课本中的结论性语言,其自学的方式往往是直接提取信息,而对教材中知识形成过程及其联系是不关注的,只求结果,没有过程性体验。针对这样的现象,我们教师就要对学生的自学进行介入,有效地提高学生自学的成效。教师通过设计“预习活动单”或者“导学单”,给学生提供学习线索,让学生带着任务进行自主学习,对新知产生兴趣和探索的热情,以保证教学在学生自主学习的基础上更加有针对性。

芬兰的教育原则是不放弃任何一个人。芬兰的学校没有校服,为的是让每个学生都不一样。芬兰教育关注学生的个性发展,当然不只是外在的校服是否一样,更重要的是为每个学生设计个性化的学习目标,使每个学生的成长都能得到最大程度的支持,尤其是学习困难的学生更应得到系统完整的支持,这已成为芬兰学校教育的核心理念。芬兰国家法律规定,学校要区别对待不同学生的不同需求,要实施“三阶梯辅导模式”,即面向全体学生的一般性辅导,面向一部分学生的加强性辅导和针对个别学生的特殊性辅导。甚至在国家教育投入方向上,芬兰明确指向把钱花在最需要花的人身上,其中就包括学习迟缓者。而对于班级里的学习迟缓者和学习优等生的处理,芬兰教育者的确自有他们的逻辑:学得快的人可以自己学,学的慢的人更需要帮助。

芬兰教育的理念和方式折射给我们的启示是:我们的学生是多种多样的,他们有着不同的思想,不同的知识储备,不同的解决问题的能力,面对这么多的不同,我们应该遵循“因材施教”的原则,对我们的学习单进行分层,设计出适合不同类型的学生的学习单,不同类型的学生面对适合自己的学习单,找到属于自己的学习方式,更加轻松高效地学习数学,提高自己在课堂上的参与度,对于学由余力的学生他们能够根据适合自己的学习单对知识进行一个更高层次的探索,而对于那些基础相对薄弱的学生他们可以根据适合自己的学习单慢慢地找到自己的优点,从而发掘自己的潜能,提高自主学习的能力。

二、如何建立分层的预习单

学生自主学习的主要载体是教材,而我们的“学习单”是学生自主学习的“梯子”。而好的“学习单”不是教材解读,也不是教案呈现,而是应该贴近每个学生自身的特点来设计。笔者就以苏教版五年级上册第二单元《组合图形的面积》这一课来说明。在第一次上这节课时为了学生不受教材上方法的限制,笔者设计了这样的作业单,让学生在课上完成后交流:

课上学生给我的反馈是:班级一共29个学生,想到5种方法的学生有一个,但是由于笔者只给了3个图,他只写了3种方法;有4个学生想到了4种方法,也是只写了3种;班级25个人都至少写出了1种方法,但是有4个人拿到这样的学习单无从下手,所以一个字也没有写;还有一个学生是会写但是看到有三个图不知道应该怎么办,所以也空着没写。对于这样的反馈让笔者陷入了思考,笔者发现这样的学习单虽然帮助了部分学生在图上表示出了自己的想法,但是同样地它限制了好学生写更多方法的可能。如果改成5个图形的话,对于中等生来说就会给他们一种无形的压力,甚至出现了原来会一种方法的但是看到这么多的图出现了畏惧心理和怀疑自己的想法,从而扰乱了他的思绪,导致他一种方法也不会。对于班级里学习力比较弱的学生来说,这样的学习单就是无效的,他们看到这样的学习单根本不会解答,那么在小组交流时也不会有参与度,最后汇报时只能是那个被忽略的人,在这堂课中他就是被动的学习者,并没有真正的参与到数学课上来。针对这样的调查和课上学生的反馈,笔者对这节课的学习单做了修改,如下:

这次笔者设计了两张作业单,先每人拿到第一张学习单,并提出了如下要求:先独立思考怎么解决这个问题,如果你解决后还有其他方法可以再问教师要学习单写其他方法,如果你思考过后发现自己无从下手,没有办法解决,可以向教师求助,教师可以提供一张具有线索的学习单。

实际上具有线索的学习单就是第二张画好辅助线的学习单。经过这样的一个简单的分层后,笔者发现在上课时思维敏捷的学生向笔者要了4次学习单,3名不会的学生也怯生生的举手向笔者求助,当笔者把第二张学习单提供给他们的时候,他们都恍然大悟:原来是这样!带着这样的提示求出了这个组合图形的面积,最后带着自己的思考参与到小组讨论和汇报中,让自己真正成为学习的主人。

一位教育家曾说过:“你每告诉学生一个答案,就剥夺了学生一次学习的机会。”通过课例我们知道可以给学生搭建学习的梯子,但是不能搭建同样的梯子,因为每个学生的起点不一样,我们应该给每个学生搭建适合他们的梯子,而这样的梯子搭建好后不是直接送给学生,而是远远地放在那里,要或者不要,由学生自己来决定。当学生需要的时候,让他们自己去选择适合自己的梯子,自己把梯子搬过来用,这样才能发挥梯子的最大的功效,如果你强行把学生不需要的梯子给他,不仅不能帮助他攀登学习的高峰,可能会成为他前进路上的绊脚石。

三、学习单分层的方法

波利亚说:“教师在课堂上讲什么当然重要。然而学生想什么更是千百倍的重要,思想应该在学生的脑海中产生出来,而教师仅仅应起一个助产婆的作用。”在笔者看来我们教师是一个建造梯子的匠人,如何搭建出适合学生的那把梯子是我们应该去思考的问题。

弗赖登塔尔反复强调:学习数学的唯一正确方法是实行“再创造”。因此,教师要推动和支撑学生这种再创造的工作,而不是把现成的知识、思想灌输给学生。要坚持儿童的立场,可能我们很多教育的内容对于成人来说都是现成的成果,但是对于儿童、学习者来说,这些内容一点都不现成,每一个都值得探索,每一个都是一块值得挖掘、孕育着发现的土壤。所以我们首先要了解我们的学生,将学生科学合理地划分成多个层次。这就要求我们教师在日常生活中对学生进行细致认真的观察、记录、分析和考核,而且对于学生日常行为和个性特征也要详细记录,同时还要对学生创新思维、情感态度和学习习惯等方面进行全面的考查,然后再对学生进行科学合理的分层。我们可以把班级学生分为三类或者四类,如笔者班级里的学生,对他们进行充分了解后分成三层:第一层优等生,综合能力和创新思维比较强;第二层中等生,基础知识扎实,但是缺乏一定的创新意识和探究能力;第三层学困生,这类学生在学习上存在诸多问题,课堂参与度不高,这也要求我们教师把更多的精力投入到这些学生身上,然后根据每类学生的特点设计分层的学习单。

在学习单的内容上也可以分层,具体内容根据具体的课例来定,但是我们可以根据学生的特点对内容有一个大致的分层。对于能力比较弱的学生在预习设计时可以布置一些基本概念、公式的填空,书中对应的练一练,即新知识的一些简单运用,目的在于让这部分学生对新的知识有一个简单的了解,在课堂上学习新的内容时轻松一点,树立信心,同时使他们养成持之以恒的数学学习习惯和自主学习能力。而有的学习单是在课上完成的,教师可以在课前给他们准备好学习的“梯子”,在他们需要的时候让他们自己来“搬”,就如《组合图形的面积》这节课的课例一样。而对于班级里的中等生就可以设计一些开放性的预习单,引导学生从不同角度思考问题,以训练学生的发散思维和求异思维,从而提高这类学生的创新意识和探究能力。对于班级里的优等生来说,不仅要注意方法的多样化,更要设计一些变式性预习题,吸引学生去钻研,使学生对容易混淆的新知识辨析得更加清楚,对知识深层次的理解更加深刻。而这些变式的学习单能够激起优等生的探索欲望,激发他们的创新思维和对数学的兴趣。

波利亚也说过:“学习任何知识的最佳途径是自己去发现,因为这种发现理解最深,也最容掌握其中的规律、性质和联系。”当我们的数学课堂,从关注知识转向关注学生,从给出知识转向引起探究,从完成教学任务转向促进学生发展,从关注学生转向关注每一位学生,从整体设计转向分层设计,让学生从肤浅触摸到深度介入,一次次的自主学习,自主建构,慢慢地成为课堂上真正的主人,而我们的教师建造的“梯子”就放在那里,要或者不要,要什么样的“梯子”,这些都由学生自己来决定,这样的学习单分层设计,这样的自主学习,必将使数学教学课堂熠熠生辉。

猜你喜欢
梯子芬兰公式
组合数与组合数公式
排列数与排列数公式
种梯子
木梯子
芬兰年轻女总理的“开挂”人生
你们扛着梯子去干吗
芬兰学校能治愈“厌学症”
在芬兰坐火车
梯云纵
“两两三三”解决天体问题