汤瑾
【摘 要】 数学思想是指人们对数学理论和内容的本质的认识,数学方法是数学思想的具体化形式,实际上两者的本质是相同的,差别只是站在不同的角度看问题,通常混称为“数学思想方法”。而小学数学教材是数学教学的显性知识系统,看不到由特殊实例的观察、试验、分析、归纳、抽象概括或探索推理的心智活动过程,而数学思想方法是数学教学的隐性知识系统。
【关键词】 数学思想;方法;理论;情感素养
数学思想是指人们对数学理论和内容的本质的认识,数学方法是数学思想的具体化形式,实际上两者的本质是相同的,差别只是站在不同的角度看问题,通常混称为“数学思想方法”。而小学数学教材是数学教学的显性知识系統,看不到由特殊实例的观察、试验、分析、归纳、抽象概括或探索推理的心智活动过程,而数学思想方法是数学教学的隐性知识系统。数学思想是从某些具体数学认识过程中提炼和概括,在后继的认识活动中被反复证实其正确性,带有一般意义和相对稳定的特征。
一、化归思想
所谓“化归”,可以理解为转化和归结的意思。化归思想就是把将要解决的问题化为已知的或已经解决的问题的一种数学思想方法。《数学课程标准》明确指出,要根据学生的年龄特征和教学要求,从学生熟悉的情景和已有的知识经验出发开展教学活动。因此,教师应用“化归思想”进行教学,可以促使学生把握事物的发展过程,对事物内部结构、纵横关系、数量特征等有较深刻的认识。
二、方程和函数思想
笛卡儿曾设想将所有的问题归为数学问题,再把数学问题转化成方程问题,即通过问题中的已知量和未知量之间的数学关系,运用数学的符号语言转化为方程(组),这就是方程思想的由来。
在小学阶段,学生在解应用题时仍停留在小学算术的方法上,一时还不能接受方程思想,因为在算求解题时,只允许具体的已知数参加运算,算术的结果就是要求未知数的解,在算术解题过程中最大的弱点是未知数不允许作为运算对象,这也是算术的致命伤。而在代数中未知数和已知数一样有权参加运算,用字母表示的未知数不是消极地被动地静止在等式一边,而是和已知数一样,接受和执行各种运算,可以从等式的一边移到另一边,使已知与未知之间的数学关系十分清晰,在小学中高年级数学教学中,若不渗透这种方程思想,学生的数学水平就很难提高。
三、极限的思想方法
极限的思想方法是人们从有限中认识无限,从近似中认识精确,从量变中认识质变的一种数学思想方法,它是事物转化的重要环节,了解它有重要意义。现行小学教材中有许多处注意了极限思想的渗透。在“自然数”“奇数”“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,让学生初步体会“无限”思想。在循环小数这一部分内容中,1÷3=0.333…是一循环小数,它的小数点后面的数字是写不完的,是无限的。
总之,在数学教育中,加强数学思想不只是单纯的思维活动,它本身就蕴涵了情感素养的熏染。而这一点在传统的数学教育中往往被忽视了。我们在强调学习知识和技能的过程和方法的同时,更加应该关注的是伴随这一过程而产生的积极情感体验和正确的价值观。
【参考文献】
[1] 赵冬臣. 杜郎口中学的课堂话语特征及其启示:以一节数学新授课为例[J]. 上海教育科研,2011(11).