雪泥鸿爪:时间里埋藏不了的经典题

2018-11-20 03:26孙毅坚
新高考·高二数学 2018年3期
关键词:竞赛题反证法本题

孙毅坚

时间可以磨灭棱角,可以滴穿磐石,可以让当年执笔冥思的少年成为一位父亲,但智慧的光芒凝汇在岁月中,却能一代代留存下来,直至今日依旧让我们领略到数学所绽放之美.

这个暑假我遇见了不少有趣的经典老题,在这里分享两道,首先,来看这道1975年南斯拉夫的数学竞赛题.

例1 在圆周上按任意顺序写上4个1与5个0,然后进行下面的运算:在相邻的相同数字之间写上O,而在不同的相邻数字之间写上1,并擦掉原来的数字,接着进行同样的运算,如此继续.证明:不管这种运算进行多少次,都不可能得到9个0.

思路分析根据题目“任意”的条件,无法确定起始排列,所以很明显,本题应从反面人手,通过反证解答,同时也敏锐地捕捉到“4+5 =9”提供的一个奇数应也有相应的作用,假设经过若干次运算最终得到9个0,那么上一步应是什么数字?再上一步呢?以此类推会不会产生不符合题干的局面?至此,本题已有眉目.

解答过程 假设进行了数次运算,第一次得到9个O,由条件知在相邻的相同数字之间写上0及第一次可推出上一步应为9个1,那么更上一步应为环状排列的O,1相间,但9为奇数,不可能使O与1数量相等,矛盾产生,可知假设不成立,则结论得证.

反思感悟其实就难度而言本题并不大,但它富有灵性的思路让人会心一笑;除了计算,数学更多的是强大的理解和轻盈的思维.灵活与严谨,是数学的戟与盾,踏上战场哪一边都不能少.

那么,接下來加大难度,来看这道1 986年中国数学奥林匹竞赛题.

例2 能否把1,1,2,2,3,3,…,1 986,1986这些数排成一行,使得两个1之间夹着一个数,两个2之间夹着2个数,…,两个1986之间夹着1986个数?请证明你的结论.

思路分析一眼看去,本题仿佛是道非常庞大的题目,稍微将前几个列举一下,并不能得到什么规律,因此思路义回到了结论上.同样,本题的答案应为否,通过反证得出结果,大量的数必然需要排序寻找规律,分两头运用结果的矛盾性进行否定,整理运算找出潜在性质,本题可以开始解答.

解答过程 假设能排列成,将各数分别编号,由1至3972.

所以原命题为否.

反思感悟这道题十分地经典,引申出后来许多竞赛题,更是有一套自己的一般性结论,回顾解题过程,本题主要在于如何下手,正所谓“这条数学题已经超出了我的语文理解水平”,一旦确定后续问题便势若破竹迎刃而解了.再看思路,可以发现在假设反证、奇偶性分析等方面,本题与例1都有许多异曲同工之处.反证法在数学中经常运用.一般来讲,反证法常用来证明正面证明有困难,情况多或复杂,而逆否命题则比较浅显的题目,问题可能解决得十分干脆.反证法的证题可以简要地概括为“否定一得出矛盾一否定”.即从否定结论开始,得出矛盾,达到新的否定.

1986年,这是个远义不远的年份,巧合的是,当年的父亲正和如今的我是同样年纪.三十多年流去,教材更新,许多琐碎的纸页章节泛了黄、卷起角,可这短短几行的数学题,却越过时光的溪川,一路捧到我的面前,依旧闪烁着它亘古不变的灵性之美,宛若惊鸿一瞥.

猜你喜欢
竞赛题反证法本题
精选课本题改编练习
反证法在数列中的应用
反证法应用于数列
点击反证法
寻觅适用反证法证明的问题
对一道2016年竞赛题的思考
对一道竞赛题的讨论
一道竞赛题的多种解法
巧解有理数竞赛题
今天是几月几日