水热法制备颜色可调CaWO4:Eu3+,Tb3+荧光粉及其发光特性研究

2018-10-19 08:52李琳琳孙镇宇
通化师范学院学报 2018年10期
关键词:干燥箱荧光粉去离子水

李琳琳,孙镇宇

稀土离子具有非常丰富的能级结构,当电子在不同能级之间跃迁时就会产生非常多的激发光谱和发射光谱[1-3].与其它荧光材料相比,稀土发光具有吸收能力强、转换效率高、发射光谱范围广以及色纯度高等优点.因此,稀土发光材料已广泛应用于显示显像、光电子器件、照明光源和医学监测等各个方面[4-7].

长白山地区内拥有我国最大的第四纪火山岩.该区火山岩中稀土元素的含量比较高,轻稀土元素较为富集.但是目前吉林省乃至我国稀土的开发及应用与一些发达国家相比还存在着差距,稀土产品单一,而且还处在原材料出口以及粗加工阶段,因此,加大对稀土资源的深入研究具有重要的意义.

单钨酸盐CaWO4具有四方晶系白钨矿结构,空间群为I41/a.在CaWO4中,每个正六价钨离子中心格位与四个同一的O2-配位,形成一个WO42-四面体,使其相对稳定.碱土金属离子Ca2+与相邻的四个WO42-中的八个O2-配位,具有S4对称性,没有反演中心[8].钨酸根基团可以强烈地吸收紫外光区域的能量,而且吸收后的能量可以从钨酸根传递到稀土离子,从而大大提高稀土离子掺杂荧光粉的外部量子效率[9].因此,CaWO4将会是稀土离子掺杂适宜的基质材料.

本课题研究制备了Eu3+,Tb3+单或共掺杂CaWO4基质的、颜色可调的荧光粉,并研究其发光性质.

1 材料和方法

1.1 仪器和试剂

(1)仪器.电子分析天平(梅特勒-托利多);磁力搅拌器(上海梅颖浦仪器仪表制造有限公司);不锈钢反应釜(威海化工机械有限公司);电热鼓风干燥箱(广州市康恒仪器有限公司);离心机(北京时代北利离心机有限公司);数控超声波清洗器(昆山市超声仪器有限公司).

(2)试剂.Na2WO4·2H2O(国药集团化学试剂有限公司,20170105,分析纯);Ca(NO3)2·4H2O(国药集团化学试剂有限公司,20170415,分析纯);Eu2O3(华艺化工有限公司,20161216,99.99%);Tb4O7(华艺化工有限公司,20161216,99.99%);无水乙醇(北京化工厂,20171104,分析纯);硝酸(北京化工厂,20171104,分析纯);去离子水(自制),所有试剂均未进行纯化处理.

1.2 样品制备

以 CaWO4:0.02Eu3+,0.03Tb3+为例的典型制备过程如下:首先将0.8798g的Eu2O3溶于硝酸溶液中,将所得到的 Eu(NO3)3溶液加热蒸发,然后用去离子水稀释,配制成50mL 0.1mol/L的Eu(NO3)3溶液以备用.同样地将0.9347g的Tb4O7按以上步骤配制成50mL 0.1mol/L的Tb(NO3)3溶液以备用.再称取0.4487g的Ca(NO3)2·4H2O溶于15mL去离子水中,之后加入0.4mL的Eu(NO3)3以及0.6mL的Tb(NO3)3溶液配成无色透明的混合溶液.另外,称取0.6597g的Na2WO4·2H2O溶解到10mL去离子水中.在强烈的搅拌下将Ca(NO3)2、Eu(NO3)3、Tb(NO3)3的混合溶液逐滴的加入到Na2WO4溶液中,立即会观察到白色沉淀.持续搅拌30min后,将上述白色悬浊液转移到30mL不锈钢反应釜中,然后将不锈钢反应釜放入电热鼓风干燥箱中,在120oC下加热反应12h.待反应结束后,将不锈钢反应釜随电热鼓风干燥箱一起冷却至室温.通过离心机收集所得产物,分别用去离子水和无水乙醇洗3~5次.最后将样品在60oC电热鼓风干燥箱中干燥12h,就可以得到最终的白色粉末CaWO4:0.02Eu3+,0.03Tb3+荧光粉.

1.3 样品的测试与表征

利用德国布鲁克AXS公司D2 PHASER型号的X射线粉末衍射仪对样品进行XRD测试,其中扫描角度为10°~80°、X射线源为Cu靶(λ=0.15406nm).采用日本S-4800场发射扫描电子显微镜对所合成物的微观形貌进行测试.采用日本日立F-7000分光光度计测试了样品的激发和发射光谱,其中激发光源为150W Xe灯.所有的测试均在室温下进行.

2 结果与讨论

2.1 物相及形貌分析

图1分别为合成样品CaWO4、CaWO4:0.05Eu3+以及CaWO4:0.05Tb3+的XRD图谱.由图可知,三个样品的XRD谱型几乎相同,且衍射峰与CaWO4标准卡片(PDF#41-1431)相匹配.表明制备的样品均为纯相物质.没有其它杂质峰的出现,说明Eu3+离子或Tb3+离子成功进入到了晶格中.由于Eu3+,Tb3+和Ca2+半径相接近,Eu3+离子或Tb3+离子将占据 Ca2+离子的格位.只是 CaWO4:0.05Eu3+和CaWO4:0.05Tb3+的衍射峰位置发生了往大角度微小的偏移,这是由于Ca2+离子半径为1.12Å、Eu3+离子半径为1.066Å、Tb3+离子半径为1.04Å,较小的Eu3+和Tb3+取代较大的Ca2+离子使衍射峰向大角度偏移,而且离子半径越小越往大角度偏移,符合Bragg方程:λ=2dsinθ.

图1 合成样品CaWO4、CaWO4:0.05Eu3+以及CaWO4:0.05Tb3+的XRD图谱

CaWO4粉末的尺寸和微观形态通过SEM进行测试分析,如图2所示.从2(a)图可以看出,Ca⁃WO4由平均直径5μm的微米球体组成,表面非常粗糙.将放大倍数调大之后,由2(b)图可以清晰的看出CaWO4是由许多50~100nm的小立方体组成的.

图2 制备CaWO4样品的整体(a)以及表面(b)的SEM图

2.2 荧光粉CaWO4:Eu3+,Tb3+的发光特性

图3 为样品CaWO4:0.05Eu3+的激发光谱和发射光谱.从图3a的激发光谱可以看出,在波长为612 nm特征发射峰的监测下,CaWO4:0.05Eu3+的激发光谱包含两部分.其中位于200~350nm的宽带激发峰属于O2-→W6+以及O2-→Eu3+的电荷迁移带(CTB).另一部分为在长波长区域的尖锐的激发峰,这些激发峰是由于Eu3+离子内部的4f→4f跃迁产生的,最大的激发峰位于393nm处,是由于Eu3+离子的7F0→5L6跃迁引起的[10-11].

图3 样品CaWO4:0.05Eu3+的激发和发射光谱

在Eu3+离子特征激发峰393nm的近紫外光激发下,相对应的样品CaWO4:0.05Eu3+的发射光谱如图3b所示.从图中可以看出发射光谱主要由三个峰组成:两个较弱的发射峰,一个位于576nm,属于Eu3+离子的5D0→7F0跃迁;第二个较弱的发射峰位于589nm处,归因于Eu3+离子的5D0→7F1跃迁;最强的一个发射峰位于612nm处,归因于 Eu3+离子的5D0→7F2跃迁[12-14].位于612nm的红光发射在发射光谱中占主导地位,说明该荧光粉将会发射红光.

图4为样品CaWO4:0.05Tb3+的激发光谱和发射光谱.从图4a激发光谱可以看出,在波长为544nm特征发射峰的监测下,CaWO4:0.05Tb3+的激发光谱也包含两部分:位于200~350nm的宽带激发峰属于O2-→W6+以及O2-→Tb3+的电荷迁移带;另一部分为Tb3+离子的特征激发峰,分别由于从基态7F6到激发态5L1(361nm)、5G5(371nm)以及5G6(380nm)跃迁引起的[15].在380nm近紫外光的激发下,相对应的样品的发射光谱如图4b所示.从图4b中可以看出发射光谱主要由三个峰组成:一个位于487nm,属于Tb3+离子的5D4→7F6跃迁;第二个也是最强的发射峰位于544nm处,归因于Tb3+离子的5D4→7F5跃迁;最后一个发射峰位于587nm处,是由于Tb3+离子的5D4→7F4跃迁引起的[16-18].

图4 样品CaWO4:0.05Tb3+的激发光谱和发射光谱

为了验证CaWO4:Eu3+,Tb3+荧光粉是否具有颜色可调的性能,合成了总浓度为0.05但Eu3+、Tb3+掺杂比例不同的CaWO4荧光粉.图5为在236nm激发下CaWO4:xEu3+,yTb3+荧光粉的发射光谱.从图中可以看出,当CaWO4基质中只掺杂Eu3+时,样品的发射光谱中只含有Eu3+的特征发射峰,表现出很强的红光发射.当Tb3+离子共掺杂到CaWO4基质中时,样品的发射光谱中除了能看到Eu3+的发射,同时也观察到了Tb3+的特征发射.而且从图中还可以看出,随着Tb3+相对掺杂浓度的增加,Eu3+的发射峰强度逐渐降低,而Tb3+的发射峰强度逐渐增强.最后,Tb3+单掺CaWO4荧光粉仅有Tb3+的特征发射峰.CaWO4:xEu3+,yTb3+(1:x=0.05,y=0;2:x=0.04,y=0.01;3:x=0.03,y=0.02;4:x=0.02,y=0.03;5:x=0.04,y=0.01;6:x=0,y=0.05)的色坐标列于表1及图6中.可以看出,通过简便地调节Eu3+、Tb3+的相对掺杂浓度,荧光粉的发光颜色可以很容易地从红色通过黄色过渡到绿色.由此可见,合成的荧光粉可作为LED使用的颜色可调荧光粉.

图5 CaWO4:xEu3+,yTb3+荧光粉的发射光谱

表1 CaWO4:xEu3+,yTb3+荧光粉的色坐标值

图6 CaWO4:Eu3+,Tb3+荧光粉的色坐标图

3 结果与讨论

本研究利用方便快捷的水热合成法成功制备了一系列Eu3+离子和Tb3+离子共掺杂的CaWO4系列颜色可调荧光粉.所有制备的样品均为纯相物质.合成的CaWO4是由平均直径约为5 μm的微球状组成,而且微球表面非常粗糙,是由许多50~100nm的小立方体组成.所有的荧光粉都能够表现出Eu3+离子或Tb3+离子的特征激发峰和发射峰,且发射光分别为红色和绿色.CaWO4:Eu3+,Tb3+荧光粉能够同时出现Eu3+和Tb3+的特征颜色发射峰.通过简便地调节Eu3+、Tb3+的相对掺杂浓度,制备荧光粉的发光颜色由于不同强度的红光和绿光的复合可以很容易地从红色通过黄色过渡到绿色,得到的颜色可调荧光粉将有望用于LED领域,为提高长白山矿产资源附加值提供了新的途径.

猜你喜欢
干燥箱荧光粉去离子水
基于COMSOL的干燥箱物理场分析与结构优化
不同水质和培养基对紫金久红草莓组培快繁的影响
一种新型橡胶生产用的膨胀干燥机
去离子水中的钙镁指标
宽带激发BaBi2(MoO4)4:Eu3+荧光粉的制备与发光性能
白光LED用钙钛矿结构氧化物荧光粉的研究进展
白光LED 用磷酸盐基荧光粉的研究进展
变频器冷却水系统严密性检查及维护诊断
YAG荧光粉的表面改性及其发光和热/湿劣化性能研究
AGM隔板氯离子的处理与研究