贾明辉,韩贵春
*贾明辉,韩贵春
(内蒙古民族大学数学学院,内蒙古,通辽 028000)
显然,不可约矩阵是弱不可约矩阵的特殊形式。
在接下来的讨论中,引入下列符号:
则为非奇异-矩阵。
引理2.5设=(a) ∈C×n∩,若∈2(α),则为非奇异-矩阵。
又由引理2.1知,为非奇异-矩阵。
即
故有
即
即(1) 式成立。
则
综上,由引理2.2知为非奇异-矩阵。
则为非奇异-矩阵。
[1] Taussky O. A recurring theorem on determinants[J]. The American Mathematical Monthly, 1949, 56(10): 672-676.
[2] Shivakumar P N, Chew K H. A sufficient condition for nonvanishing of determinants[J]. Proceedings of the American mathematical society, 1974, 43: 63-66.
[3] Guo Z, Yang J G. A new criteria for a matrix is not generalized strictly diagonally dominant matrix[J]. Applied Mathematical Sciences, 2011, 5(6): 273-278.
[4] 李敏,李庆春. 非奇异H-矩阵的新判定准则[J], 工程数学学报, 2012, 29(5): 715-719.
[5] 山瑞平,陆全,徐仲,等. 非奇异H矩阵的一组细分迭代判定条件?[J]. 工程数学学报, 2014, 33(6):857-864.
[6] Han G, Gao H, Yang H. Discussion for -Matrices and It’s Application[J]. Journal of Applied Mathematics, 2014, 2014:1-6.
[7] 韩贵春,高会双,肖丽霞. 非奇异-矩阵的判定准则[J]. 湖北民族学院学报, 2014,32(1): 68-70.
[9] Gao Y M. Criteria of the generalized diagonally dominant and nonsingular matrices[J]. Northeast Normal Uuiv., 1982, 3: 23-28.
[10] Cvetković L. H-matrix theory vs. eigenvalue localization[J]. Numerical Algorithms, 2006, 42(3): 229-245.
[11] Ostrowski A. Über die Determinanten mit überwiegender Hauptdiagonale[J]. Commentarii Mathematici Helvetici, 1937,10(1): 69-96.
[12] Li B, Tsatsomeros M J. Doubly diagonally dominant matrices[J]. Linear Algebra and Its Applications,1997,261(1-3): 221-235.
[13] Ostrowski A M. Über das Nichtverchwinden eiber Klasse von Determinanten und die Lokalisierung der charekteristischen Wurzeln von Matrizen[J].Compositio. Math., 1951, 9: 209-226.
[14] Bru R, Corral C, Gimenez I, et al. Classes of general H-matrices[J]. Linear Algebra and Its Applications, 2008, 429(10): 2358-2366.
[15] Brualdi R A. Matrices eigenvalues, and directed graphs[J]. Linear and Multilinear Algebra, 1982, 11(2): 143-165.
[16] 杨尚骏,张晓东.关于弱不可约矩阵特征值包含区域的Brualdi定理[J]. 安徽大学学报:自然科学版, 1999,23(1):1-5.
[19] 徐成贤,徐宗本. 矩阵分析[M]. 西安:西北工业大学出版社,1991.
*JIA Ming-hui, HAN Gui-chun
(School of Mathematics, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028000, China)
The concept of weakly irreducible2- diagonally dominant matrices according to circuit is introduced. Firstly, an equivalent condition for judging weakly irreducible strictly2- diagonally dominant matrices according to circuit is given. Furthermore, some new practical criteria for nonsingular-matrices are obtained for the theory of diagonally dominant matrices. The study enriches and perfects the theory of- diagonally dominant matrices according to circuit and nonsingular H-matrices.
1674-8085(2018)01-0012-05
O151.21
A
10.3969/j.issn.1674-8085.2018.01.003
2017-09-04;
2017-11-12
内蒙古自治区自然科学基金项目(2016MS0118);内蒙古民族大学科学研究基金项目(NMDYB1778,NMDYB15089)
*贾明辉(1977-),女,内蒙古呼伦贝尔人,副教授,主要从事数值代数与矩阵理论方面的研究(E-Mail:47398255@qq.com);韩贵春(1978-),女,山东阳谷人,讲师,博士生,主要从事数值代数与矩阵理论方面的研究(E-mail:380973379@qq.com).