董秀明 贺方超
基金项目:湖北省教育厅人文社科项目(No.15Q075)。
摘要:线性代数是一门特别抽象的数学课程,很多同学在学习中都遇到了困难,然而一些演算过程耗费的大量精力,使线性代数的教学和学习陷入了不断重复的繁琐中。为了提高线性代数的教学效果,激发学生的学习兴趣,将理论与实际之间结合起来,建议在线性代数教学中引入matlab软件辅助教学。
关键词:matlab软件;线性代数;辅助教学
线性代数是理工科大学生的一门数学基础课,其内容非常抽象,不同章节之间又存在一些不容易掌握的联系,因此线性代数的学习状况不容乐观。而传统的线性代数课堂上,绝大部分的教学仍然是围绕着理论进行讲解,教授方式大部分仍是黑板演算,即使采用了多媒体也是笔算过程。例如,一个四阶数值行列式的求解,一个阶数不算高的数值矩阵进行初等行变换化为行最简形,一个线性方程组的求解,这些都需要做上十次的四则运算,并且只有在保证没有一点出错机会的条件下计算才会正确,这些四则运算的计算过程虽然考察了学生计算的精确性和耐心程度,但是是一些没有什么含金量的处理过程,只是一些繁琐的按部就班。笔算能力已经在大学之前得到了很好的锻炼,已经达到极致不需要再进行强化了,英国人数学笔算能力很差但国家仍然发展不错这一事实也从一方面说明我们的大学生无需再进行更多重复计算训练了。所以不管是教师还是学生,日常教学和学习过程在这些最基本的演算上,耗费了大量的时间,而学生在分析问题、处理问题的能力上没有任何提高。而且这些演练针对的行列式或者矩阵还只能是阶数比较小的,阶数太大了计算量是难以想象的。线性代数传统教学的劣势,很多一线教师也都注意到了,他们也在进行积极的探讨,寻求教学上的突破。
现在我们正处于大数据时代,要想处理大量数据必须依赖计算机,把这些繁琐的工作教给专业软件,在这方面数学课程的教学应该走在最前面。很幸运的是,有一种叫matlab的软件正好可以做这方面工作。Matblab是矩阵实验室(matrix laboratory)的缩写,它的一部分是从美国数学家开发的线性代数软件包Linear agebra package调用的,具有强大的数值计算功能,能解决该学科中的几乎所有问题。由于它以矩阵作为基本数据单位,因此与线性代数有着天然的联系。在线性代数的学习过程中,学生在课堂学习的同时,如果教师能在课堂上进行matlab语言相应输入演示,或者教给学生方法让学生去实验室自行输入观察演算结果,将会极大提高学生的学习兴趣,并为他们掌握matlab这个科学运算工具打下良好的基礎。
Matlab的确是非常适合线性代数学习的,它简单易学,界面友好,只需要在命令窗口中输入语句就可完成,将线性代数中最繁重的环节通过敲击键盘解决。用matlab解决线性代数中的基本问题,联系我们目前40学时所用的教材,主要有以下几个方面,几乎涵盖了线性代数的所有内容。
1. 实现矩阵的输入或创建
矩阵的输入就像在纸上写一个矩阵一样简单明确,如输入A=[1 2 3;4 5 6;7 8 9]就得到矩阵A,通过一些命令还可以提取A中的小矩阵,还可以构造含矩阵A的大矩阵。创建矩阵主要通过一些特定的函数和语句进行。
2. 矩阵的基本运算
矩阵输入或创建之后,就可以进行各种基本运算了,这些运算所用符号简洁易懂,容易掌握。
矩阵的加减法(A+B,A-B),乘法(A*B),数乘矩阵(k*A),转置(A′),方阵的行列式(det(A)),逆矩阵(inv(A)),矩阵的秩(rank(A)),矩阵的迹(trace(A)),对矩阵进行初等行变换化为标准形(rref(A)),这些都可以通过一个命令进行实现。
3. 求解线性方程组
由于线性方程组解的情况有三类,需要根据系数矩阵和增广矩阵的秩之间的关系进行判定,因此线性方程组的求解需要的命令相对增加,但一般十几行命令就完成了。
4. 求方阵的特征值和特征向量
应用matlab的命令[V,D]=eig(A)即可求解方阵A的特征值特征向量,其中矩阵D为A的特征值所构成的对角阵,V的列向量为A的特征向量,与D中特征值一一对应。
5. 方阵的正交规范化及二次型化为标准形
orth(A)表示将矩阵A正交规范化,得到正交矩阵。利用不超过十个命令可以将二次型化为标准形。
引入matlab进线性代数课堂的主要作用,是辅助教学,且不可本末倒置。线性代数中的定义、定理等最基本的内容必须花大工夫认真讲解,一些笔算也是必需的,一些理论推导仍需严格进行。Matlab的目的是增加学习的趣味性,为线性代数走上实际应用起到桥梁作用。
参考文献:
[1]蔡光兴,李逢高.线性代数(第四版)[M].北京:科学出版社,2016.
[2]周晓阳.数学实验与Matlab[M].武汉:华中科技大学出版社,2002.
作者简介:
董秀明,贺方超,湖北省武汉市,湖北工业大学理学院。