何文兵
新课标把德育放在十分重要的地位,作为基础学科的数学也必须重视德育。数学中的德育功能相对于一些文科来讲是隐性的、潜在的。事实告诉我们,唯有当知识被用来开启心智、解决问题的时候,才真正找到了通向美德的途径,才能转化成人生智慧的力量。数学教学承载着发展思维、启迪智慧、培养能力的重要使命,那么,我们在数学教学中应该如何向此努力呢?
一、以学定教,把握起点,让学生体验“求真”
数学学习主要是进行“再创造”。这个过程必须由学生自己主动去完成,而不是外界强加。学生通过思维活动,实现对学习内容的“理解”和“消化”。这个过程必须在新的学习材料和主体已有的知识和经验之间建立起实质性的、非任意性的联系,从而获得确定的意义。
1.学生,不是“白纸”
学生并不是在学校才接触数学,他们生活中经常接触到一些与数学有关的现象,在对这些现象做出解释的过程中,积累了丰富的感性经验。比如,他们玩过积木,比过物体的长短、大小、轻重、厚薄,和家长一起外出购物,知道起床、睡觉的时间等等。这些活动,使他们获得了数量和物体空间形式最初步的观念,虽然这些都是非正规和不系统的,甚至有些是模糊和错误的,但是这些都为他们学习数学奠定了基础。
我们应该根据学生原有的知识状况进行教学,把握学生的学习起点,这是数学教学的实际出发点。比如,教学口算整十数乘一位数20×3,学生能直接说出结果60,并能说出算法:先算2×3=6,再在6的后面添上一个0。为什么要在6的后面添上1个0,学生解释不清楚。教学时,教师要让学生给自己的算法找一个合理的解释,让学生在解释的过程中理解算理,掌握算法。
当我们的教学围绕学生的实际展开,教师的教学行为和思考是求真的,这样就少了一些虚假的互动,少了教师权威下的对学生的控制,为学生的发展而教才不至于成为一句空话。
2.学生,不是“容器”
傳统的教学多是教师教、学生学,教师讲、学生听,教师传授、学生接收。然而,学习如果无需学生的努力思考,只是被动地接受,对一个人的未来是灾难性的。因为学生的头脑不是一个要被填满的容器,而是一支需被点燃的火把。数学知识不能简单由教师的头脑灌输到学生的头脑,而只能由每个学生依据自身已有的知识和经验主动地加以建构。
教学《三角形的面积》一课,笔者让学生先猜想三角形的面积与什么有关?怎样计算?很多学生说可以用“底×高÷2”来计算,这个结论是否可靠呢?笔者让学生想办法验证,有的学生借助等腰直角三角形沿着高剪开,拼成了长方形进行推理,有的借助了两个完全一样的三角形转化成平行四边形推理,在操作中发现,通过讨论交流互动,验证自己的猜想。此过程的学习,学生不仅仅知道了三角形面积计算的方法,更重要的是获得了转化的思想,以及像科学家那样严谨、求实的科研态度。
3.学生,不是“标准件”
学生的数学学习活动应该是一个生动活泼、丰富多彩、富有个性的过程。同一内容的学习,不同的个体由于所处的文化环境、家庭背景、知识背景和思维方式等方面的差异而具有不同的思维过程,表现出一定的差异性。表现在学习过程中,每个学生都有自己的学习节奏,我们的数学教学在肯定教学活动规范性的同时,还应该尊重学生的个性,提倡开放性和创造性。比如,计算教学中让学生先试算,然后呈现多样的算法交流。这样的教学过程就是充分尊重学生个性、差异性的体现。
教育的宗旨是发现,是引导,是保护,是激励。面对学生个性化的思考,我们应该给予合适的评价,为学生提供充分的交流机会,而不是将统一的模式塞给学生。数学课堂,应当成为学生探索与交流、自主构建的场所,成为学生自由表达思想、放飞心灵的舞台。
二、以学促教,生成智慧,让学生浸润 “至善”
教学智慧作为一种实践智慧,是一种走向“善”的行动。教学的智慧,就是要采取行动。
1.当学生“会了”时
教学《除数是一位数的小数除法》内容,学生有笔算整数除法的基础,有生活中的购物经验,笔者让学生尝试解决问题“甲店:5盒牛奶标价11.5元;乙店:5盒牛奶送一盒标价12.3元,到哪个商店购买便宜?”大部分学生能很快列出11.5÷5,12.3÷6的算式,并通过竖式很快得出结果。笔者针对本节课的重难点提出:“计算11.5÷5商的中间为什么点小数点?小数点为什么点在数字2和3的中间?”这两个问题鼓励学生独立思考,展开讨论和交流,引导学生结合试算的竖式分析理解整数部分11除以5商2余1,余数1元可以转化为10角与十分位上的5角合并成15角继续除,得到3角,也就需要在商的十分位上写3(商品标价中元角之间用小数点隔开了)。
上述案例是我们经常在教学中遇到的“部分学生已知,部分学生未知,学生之间具有较大差异”教学场景。教师的教学智慧,表现在直面学生的数学学习现实,不以部分学生的已知替代另一部分学生的未知,更不要让学生只知其然而不知其所以然,而是要把学生既有的知识、经验和学习的内在积极性都为教学所用,成为动力之源、能量之库。
2.当“意外”发生时
教学《看图找关系》一课,学习了汽车从1到3分钟行驶速度与时间的关系后,笔者让学生思考汽车从1到3分钟行驶路程的大致变化情况。有的学生认为汽车从1到3分钟路程发生了变化,大多数学生则认为汽车从1到3分钟行驶的路程没有变化。笔者想让学生在相互辩论中明理,没有想到的是认为发生变化的学生拿不出充分的理由来说服对方,导致课堂一片沉寂。认为汽车从1到3分钟行驶的路程没有变化的学生显然还处在定势状态,思维跟不上来。笔者相信学生通过自己的努力能够找到合理的解释,于是慢下来,默默地等待,终于有一个学生想出了说服大家的办法,他要求上台进行演示,并且边表演边引导大家观察思考:“大家看,我以400米/分钟的速度行驶,经过两分钟,我的路程变化没有?”静态的图像变成了动态的行驶过程,理解错误的学生自主纠错:“我们刚才把速度和路程混淆了,虽然速度一直保持在400米/分钟,但是汽车一直在行驶,所以路程也会随着时间的变长而增加。”以“行”的方式模拟表演,再现汽车运行的过程,让学生感悟物体运动中,速度不变,路程会随着时间的变化而变化的规律,于“不变”与“变”中更加深刻地感受到物体运动变化的规律。
课堂教学中,学生生成与教师预设方案偏离或冲突的“意外”,也是教师让学生更充分表达所思所想的机会和舞台。教学的智慧表现为“教学意外”的重新审视与认识,相信学生,静下心来,耐心等待,还学生一个精彩。
三、学教合一,孕育文化,让学生感受“唯美”
数学是一种文化,数学的发展与人类文化密切相关,一直是人类文明主要的文化力量。数学的教学,不能仅限于表层的知识,要重视、挖掘渗透在数学知识中的丰富而深刻的文化内涵。
要让学生体会到数学与自然、人类生活紧密相关,数学与其他学科紧密相联,在自然现象中和其他学科中蕴涵着数学知识和原理,数学在人类生活和其他学科中的应用;要让学生感受到数学本身的特征,如美妙的形,有趣的数,神奇的数学规律,深邃的数学哲理……要让学生捕捉到数学家的思想方法、学习态度、個性品质、人文精神。要让学生发现数学的美。数学的美,美在和谐。加与减,乘与除,奇与偶,曲与直,有限与无限……其间的正反、互补与辩证,让事物间的关系显得如此沉稳而协调。数学的美,美在奇异。黄金分割、勾股定律、圆周率……魅力无穷。数学的美,美在智慧。大家熟知的数学家高斯的故事中1+2+3+4+……+100,要是一个数一个数去加,加着加着可能就乱了,但是若取首尾两数之和进行配对,计算出答案就简单多了。这个高度智慧的方法是高斯在少年时代发现的,这是人类的发现,也是人类智慧的花朵。
数学的抽象化、形式化、逻辑化的特点看上去是冷冰冰的,但是数学背后的理性精神,数学思想方法的魅力,使学生能够体察理性思维的精确、奥妙、完善。比如教学《用数对确定位置》时,笔者向学生介绍笛卡尔创建直角坐标系的故事。又如,学习了《因数和倍数》,笔者向学生介绍“中国剩余定理——韩信点兵的故事”。再如,教学《比例的知识》时,笔者给学生讲泰勒斯如何利用这些知识解决《金字塔的高度》难题。
当数学文化的魅力真正到达课堂,融入教学时,数学就会更加平易近人,数学教育就会从文化层面上让学生进一步理解数学、喜欢数学、热爱数学。
“美德是智慧,智慧即德行。”我们追求 “真、善、美”的境界,教育的价值、数学教育的意义也应为此而生。当我们为学生着想,设身处地考虑学生所需,而不是为了教学顺利进行,强行按照教师的预设与意愿进行下去,这样的教学智慧是真实的;当我们承认学生差异,允许学生出错,以开放的心态宽容并接纳学生的错误,发掘隐藏错误之中的“真金”,这样的教学智慧是至善、向上的;当我们引领学生透过现象寻找数序规律,举一反三灵活应用,探寻广袤深远的数学文化史,这样的教学智慧是灵性、唯美的。“以学生为本”,心向学生,追求真、善、美,是我们教学的出发点和归宿。
(作者单位:宜都市枝城小学)
责任编辑 陈建军