赵婷,席欧彦,秦瑞坪,邱玲玲,马晓玲,李江伟
(新疆大学生命科学与技术学院 新疆生物资源基因工程重点实验室,乌鲁木齐 830046)
卵泡刺激素功能肽与受体胞外区不同片段结合作用的分析
赵婷,席欧彦,秦瑞坪,邱玲玲,马晓玲,李江伟
(新疆大学生命科学与技术学院 新疆生物资源基因工程重点实验室,乌鲁木齐 830046)
【目的】卵泡刺激素(FSH)33-53肽可以与FSH受体(FSHR)结合,并激活下游信号,被作为FSH功能肽。然而其在受体上的具体结合位置还不清楚。阐明FSH33-53肽在FSHR上的结合区域,为基于FSH的疫苗设计提供依据。【方法】采用重组的FSHR 胞外区(ECD)和富含亮氨酸区(LRR)及合成的FSHR9-30区分析这些FSHR的功能区域与FSH33-53的结合作用。PCR扩增得到hFSHR ECD和hFSHR LRR目的基因,构建重组质粒pET22b-FSHR-ECD和pET22b-FSHR-LRR,表达纯化获得蛋白FSHR-ECD和FSHR-LRR。采用多肽合成法获得FSHR9-30-KLH。通过ELISA方法检测受体片段与FSH33-53肽的结合和亲和力。【结果】获得FSHR-ECD和FSHR-LRR蛋白,其相对分子质量(Mr)分别为43和32kDa。在受体为0.5 μgmL,配体为2.5 μgmL时,三种蛋白均与FSH33-53肽结合。ELISA检测受体与配体的亲和力分别为0.21×10-6、0.45×10-6和0.056×10-6mol/L 。【结论】FSHR 9-30片段与FSH33-53肽的结合较其它两个片段结合力强。
FSH33-53肽;LRR;FSHR9-30肽;胞外区;亲和力
【研究意义】卵泡刺激素(Follice stimulating hormone, FSH)属于腺垂体分泌的糖蛋白激素,其作用是促进卵泡生长和成熟,也是治疗不孕症的常用药物[1-2]。卵泡刺激素受体(Follicle stimulating hormone receptor,FSHR)为七次跨膜受体,属于G蛋白偶联受体超家族成员。FSHR有695个氨基酸组成,分别有胞外区(extracellular domain,ECD)、胞内区(intracellular domain,ICD)和跨膜区组成。只有受体与配体结合才能对生理功能产生一定的作用,测定配体与受体亲和力的结合实验是药物评价、研发和作用机理研究中不可缺少的部分[3]。针对FSH33-53肽结合作用的研究为靶向卵泡刺激素药物和疫苗的开发提供新的解决途径。【前人研究进展】作为靶向药物的研究要满足其只在生殖系统中表达,其次尽量减少副作用[4-5]。当前研究FSH的片段有1-15、33-53、51-65和81-95,其中33-53和81-95肽参与受体的识别和结合较好[6]。近年来报道卵泡刺激素不仅能够在生殖上研究不孕症,还可在动物脂肪代谢分子机制中产生影响[7-8]。在研究FSH靶向药物的研究中,发现在体内的半衰期较短,不足以达到治疗的目的,延长其在体内的时间可以通过偶联一些拮抗剂或者能更有效的通过结合位点的方法[9-10]。【本研究切入点】与FSH全长结合的高亲和力位点,如18-366(ECD)、18-259(LRR)肽段。在研究FSHR不同肽段时发现FSHR9-30在激素结合中起到很重要的作用[11]。使用这些重要的肽段研究与FSH33-53肽的结合情况,能够有效的靶向于激素结合位点,更有效的去开发一些针对FSH33-53肽的药物或疫苗。【拟解决的头饰问题】鉴于以上介绍研究中选用配体FSH的33~53多肽和hFSHR ECD、hFSHR LRR和hFSHR9-30作为研究的材料,试验中初步获得FSHR的胞外区、N端的9-30和LRR,得到这三个不同肽段的蛋白同时制备抗多肽抗体,用FSHR胞外区的不同肽段测定与FSH33-53肽的结合力,通过计算公式获得这三个肽段的亲和力,为后续实验提供理论依据。
1.1 材 料
原核表达载体pET22b和pDisplay-AP-FSHR质粒为实验室保存。FSH33~53-biotin和FSHR9-30-KLH由上海吉尔生化有限公司合成。pDisplay-AP-FSHR是由北京大学化学与分子工程学院馈赠。ExTagpolymerase,限制性内切酶NcoⅠ和NotⅠ和T4连接酶购自宝生物工程(大连)有限公司。质粒小提试剂盒、琼脂糖凝胶回收试剂盒和纯化回收试剂盒均购自Omega公司。Ni SepharoseTM6 Fast Flow购自GE Healthcare 公司。Bradford 蛋白定量试剂盒购自北京百泰克生物技术有限公司。兔抗FSHR多抗为SIGMA-ALDRICH公司产品,HRP-羊抗兔IgG和HRP-羊抗鼠IgG为康伟公司出品。完全弗式佐剂和不完全弗式佐剂购自 Sigma中国公司。ECL显色液购自Beyotime生物技术有限公司。其他常规试剂为进口或国产分析纯。
1.2 方 法
1.2.1 重组质粒pET22b-FSHR-ECD和pET22b-FSHR-LRR的构建
在NCBI中查找人fshr的基因及氨基酸序列,经DNAman软件分析获得FSHR的ECD和LRR。分别设计FSHR的ECD和LRR区的PCR引物:FSHR-ECD-P 1,5'-catgCCATGGGATGTCATCATCGGATCTGTCACTG-3'和FSHR-ECD-P2,5'-ata agaatGCGGCCGCGACTCTGAGGATGTTGTACCCCA-3';FSHR-LRR-P1,5'-catgCCATGGGATGTCATCATC GGATCTGTCACTG-3'和FSHR-LRR-P2,5'-ataagaatGCGGCCGCTTCCAGAGTAGGCAGCTTTTTTA -3'扩增目的基因ECD和LRR,PCR产物经NcoⅠ和NotⅠ双酶切后,与载体pET22b连接,连接产物转化DH5α感受态细胞,将转化子涂布在LB固体培养皿中,次日挑取单克隆,提取质粒,在通过NcoⅠ和NotⅠ双酶切鉴定,之后送公司进行测序分析。
1.2.2 目的蛋白的表达与纯化
用包涵体溶解缓冲液溶解包涵体,超声破碎仪获得粗蛋白的上清与沉淀,沉淀使用6 M尿素溶解,镍柱亲和层析纯化,从低到高的咪唑浓度洗脱蛋白,咪唑浓度依次为10 mM、20 mM、20 mM、40 mM、40 mM、120 mM和500 mM。以此获得纯度较高的蛋白,通过超滤获得浓度较高的FSHR-ECD和FSHR-LRR蛋白,之后经Bradford 法测定浓度。
1.2.3 western blot鉴定蛋白FSHR ECD和FSHR LRR
用western bolt检测目的蛋白的特异性。Western blot中的一抗采用用SIGMA-ALDRICH公司的兔抗FSHR多抗,稀释比例为1∶800;二抗采用康伟公司的HRP-羊抗兔IgG,稀释比例1∶5 000,ECL显色,在Las4000仪器中检测。
1.2.4 ELISA试验检测FSHR ECD、FSHR LRR和FSHR9-30与FSH33-53肽的结合
在96孔板中分别包被蛋白FSHR ECD、FSHR LRR和FSHR9-30,浓度为0.5 μg/mL,阴性孔为BSA,浓度为0.5 μg/mL,4℃过夜。然后加入PBST洗3遍,加入5%脱脂奶粉,37℃封闭2 h,之后用PBST洗,加入浓度为2.5 μg/mL的FSH33-53肽,37℃孵育1 h,之后用PBST洗板,加入1∶2 000稀释的HRP-streptavidin作为二抗,TMB显色,酶标仪中测定A450值。
1.2.5 非竞争ELISA检测受体和配体的亲和力
在96孔ELISA板中分别包被抗原浓度为0.5 μg/mL的FSHR ECD、FSHR LRR和FSHR9-30,4℃过夜后用PBST洗3遍,加入浓度梯度为0.2、0.8、1.2、2和2.5 μg/mL的FSH33-53-biotin肽,37℃孵育2 h后用PBST洗3遍,加入1∶2 000稀释的HRP-streptavidin作为二抗,TMB显色,酶标仪中测定A450值,阴性对照包被0.5 μg/mL的BSA,其余与实验组处理相同。
1.2.6 非竞争EISA检测受体与配体的亲和力
1.3 数据处理
2.1 hFSHR ECD和hFSHR LRR基因的扩增与酶切鉴定
以pDisplay-AP-FSHR质粒为PCR模板,用特异性引物FSHR-ECD-P1和FSHR-ECD-P2、FSHR-LRR-P1和FSHR-LRR-P2扩增目的基因ECD和LRR,通过1%的琼脂糖凝胶检测,结果显示,ECD和LRR基因片段大小分别为1 044 bp和723 bp,与预期市场计算大小一致,重组质粒pET-22b-FSHR-ECD和pET22b-FSHR-LRR经酶切鉴定,电泳结果显示重组质粒含有1 044 bp和723 bp大小的插入片段,同时测序结果也表明重组质粒构建成功。图1
A:FSHR-ECD和FSHR-LRR的PCR扩增;M:DNA marker DL2000;1~2:FSHR-ECD和FSHR-LRR的PCR产物;B:重组质粒pET22b-FSHR-ECD的酶切鉴定;M:DNA markerDL5000;1:重组质粒pET22b-FSHR-ECD的酶切产物;2:重组质粒pET22b-FSHR-ECD的酶切质粒;C:重组质粒pET22b-FSHR-LRR酶切鉴定;M:DNA marker DL5000 ;1:重组质粒pET22b-FSHR-LRR的酶切质粒;2:重组质粒pET22b-FSHR-LRR的酶切产物
A:M:DNA markerDL2000;1,2:PCR products of hFSHR ECD and hFSHR LRR;B:M:DNA markerDL5000;1:digestion products of pET-hFSHR-ECD;2:recombinant plasmid of pET-hFSHR-ECD;C:M:DNA markerDL5000;1:digestion products of pET-hFSHR-LRR;2:recombinant plasmid of pET-hFSHR-LRR
图1 重组蛋白FSHR-ECD和FSHR-LRR的PCR扩增和双酶切鉴定
Fig.1 PCR for hFSHR ECDand hFSHR LRR and Restrictive enzyme digestion analysis of recombinant plasmid
2.2 hFSHR ECD和hFSHR LRR蛋白的表达纯化与鉴定
原核蛋白FSHR ECD和FSHR LRR经SDS-PAGE分析显示,均以包涵体形式表达,在Mr约43×103、 32×103的位置分别有一条清晰的目的条带,图2(A)这两种蛋白采用镍柱亲和层析法纯化,将溶解的包涵体依次用不同浓度的咪唑洗脱,可获得纯度较高的蛋白。经15%SDS-PAGE电泳检测(图2(B)和(C)),最终纯化蛋白条件确定为20、40和200 mM咪唑。经过多次纯化获得较纯的蛋白FSHRECD和FSHRLRR(图2D),蛋白纯度可达90%。通过western blot检测获得的重组蛋白ECD和LRR能够与兔抗FSHR的多克隆抗结合(图2(E)),条带大小与预期的一致。图2
A: FSHR ECD和FSHR LRR蛋白的诱导表达,M(14.4-116kDa);1~4:分别为诱前、诱后、上清和沉淀;5~8:分别是诱前、诱后、上清和沉淀。B:M(14.4-116kDa); FSHR ECD的纯化;1:粗蛋白;2~9:分别是10、20、20、20、40、40、200、500 mmol/mL咪唑洗脱蛋白样品;C:M(14.4-116kDa); FSHR LRR的纯化;1:粗蛋白;2~9:分别是10、20、20、20、40、40、200、500 mmol/mL咪唑洗脱蛋白样品。D:M(14.4-94.0kDa)1:蛋白FSHR ECD;2:蛋白FSHR LRR。E:M(14-120kDa)1: FSHR LRR蛋白;2: FSHR ECD蛋白
A:Inducible expression of pET22b-FSHR-ECD and pET22b-FSHR-LRR.M(14.4-116);1-4:following 1:uninduced;2:induced;3:supernatant;4:precipitation.B: purification of FSHR ECD;1: FSHR-ECD protein;2-9:folloeing 10、20、20、20、40、40、200、500 mmol/mL to elution protein samples by Imidazole;C: purification of FSHR-LRR ;1: FSHR-LRR protein;2-9:following 10、20、20、20、40、40、200、500 mmol/mL to elution protein samples by Imidazole。D:Marker(14.4-94kDa),1:FSHR ECD protein;2:FSHR LRR protein;E:Marker(14-120kDa)1:FSHR LRR protein,2:FSHR ECD protein
图2 FSHR-ECD和FSHR-LRR蛋白的表达纯化与鉴定
Fig.2 Purification of FSHR-ECD and FSHR-LRR protein Purification of pET22b-hFSHR-ECD and pET22b-hFSHR-LRR protein and identification of hFSHR ECD and hFSHR LRR by Western Blot
2.3 ELISA检测FSHR不同片段与FSH33-53肽段结合作用
在含有FSHR-ECD、FSHR-LRR和FSHR9-30的三种肽段中分别加入FSH33-53肽,结果分析与对照相比FSHR的胞外区的不同肽段与FSH33-53肽均结合。 图3
2.4 ELISA检测FSH33-53肽与FSHR不同肽段的结合力
图3 FSH33-53肽与FSHR胞外区不同肽段的结合
图4 FSH33-53肽与FSHR的ECD、LRR和9-30肽结合的亲和力测定
FSHR胞外区不同肽段亲和力Kd(×10-6)FSHR-ECD0.21FSHR-LRR0.45FSHR9-300.056
FSHR是七次跨膜受体,其N端的胞外区是与配体特异结合较高的肽段。最初对于FSHβ链的研究中发现,FSHβ链的1-15、33-53、51-65、81-95和101-111也参与受体的结合。同时对于FSHR的研究中发现LRR肽段和胞外区的络氨酸都与FSH的结合有很大影响,在FSHR胞外区中的二硫键也影响着激素的结合[13-14]。了解FSHR的结构和生物活性对于后续的研究是很有帮助的。在研究中探讨了FSH33-53肽与FSHR的不同肽段的结合,发现对于FSH33-53肽结合较强的受体肽段为9-30这一区域。
通过使用X-ray发现FSH和FSHR结合的晶体结构研究中推测出许多重要的结合位点[15],其中包括FSHR的胞外区,LRR区,连接胞外区和9-30区,这些肽段对于FSH的结合起关键性的作用,研究FSHR的不同肽段不仅仅局限于这些,如FSHR的172-257、221-252、285-300等[16]这些肽段对于FSH的结合都是有影响的。研究FSH的33-53和81-95肽段与FSHR结合的试验中,得到FSH33-53和81-89这两个肽段是比较有效的拮抗物[17]。在研究中选择片段FSH33-53肽段,研究分析FSH33-53肽与FSHR ECD、FSHR LRR和FSHR9-30肽的结合。试验中通过构建获得的FSHR-ECD和FSHR-LRR重组蛋白,通过ELISA结合试验结果表明,FSHR ECD、FSHR LRR和FSHR9-30均与FSH33-53肽结合,说明FSH33-53肽可以识别FSHR的ECD、LRR和9-30区域,但各自的亲和力大小不同,通过计算结合力大小说明对于FSH33-53肽段,其与受体的9-30区结合较强,因此可以初步说明FSHR9-30可以作为与FSH33-53激素亲和较高的肽段,为针对FSH33-53肽的靶向药物提供参考。
综上所述,在研究中通过最终western blot检测结果表明,获得重组蛋白FSHR-ECD和FSHR-LRR,大小分别是43kDa和32kDa,同时通过公司合成获得FSHR9-30的短肽。初步获得了FSHR的ECD、LRR和9-30这三段肽段,并且通过ELISA检测亲和力实验,结果表明,FSHR9-30是FSH33-53肽的一个结合较高的肽段,其结合力大小为0.056×10-6mol/L。这为将来设计对于FSH的避孕疫苗和靶向治疗不孕症提供一个理论依据。
References)
[1] Conway, G. S., Conway, E., Walker, C., Hoppner, W., Gromoll, J., & Simoni, M. (1999). Mutation screening and isoform prevalence of the follicle stimulating hormone receptor gene in women with premature ovarian failure, resistant ovary syndrome and polycystic ovary syndrome.ClinicalEndocrinology, 51(1): 97-99.
[2] Dominguez-Lopez P., Diaz-Cueto L., Arechavaleta-Velasco M ., Caldio-Soto F .,Ulloa-Aguirre A., & Arechavaleta-Velasco F (2017). The follicle-stimulating hormone receptor Asn680Ser polymorphism is associated with preterm birth in Hispanic women.TheJournalofMaternal-Fetal&NeonatalMedicine, DOI: 10.1080/14767058.2017.1292245
[3] 木亚沙尔·买买提拉洪, 夏雪琴,郭骏, 等. 卵泡刺激素及其受体与肿瘤的相关性[J]. 生命的化学, 2015, 35(1): 9-14.
Muyashaer Maimaitilahong, XIA XUE-qin,GUO Jun, et al. (2015). Relationship between follicle stimulating hormone and its receptor and cancer [J].ChemistryofLife, 35(1): 9-14. (In Chinese)
[4] Modi, D. A., Sunoqrot, S., Bugno, J., Lantvit, D. D., Hong, S., & Burdette, J. E. (2014). Targeting of follicle stimulating hormone peptide-conjugated dendrimers to ovarian cancer cells.Nanoscale, 6(5): 2,812-2,820.
[5] Xu, Y., Pan, D., Zhu, C., Xu, Q., Wang, L., & Chen, F., et al. (2014). Pilot study of a novel 18 f-labeled fshr probe for tumor imaging.MolecularImagingandBiology, 16(4): 578-585.
[6] Grasso, P., Rozhavskaya-Arena, M., & Jr, R. L. (1999). Cysteine residues in a synthetic peptide corresponding to human follicle-stimulating hormone beta-subunit receptor-binding domain 81-95 [hfsh-beta-(81-95)] modulate the in vivo effects of hfsh-beta-(81-95) on the mouse estrous cycle.RegulPept, 81(1-3): 67-71.
[7] Zhang, X., Hong, S., Kang, Y., Zheng, Y., Sun, H., & Xu, C. (2014). Expression and purification of the extracellular domain of the human follicle-stimulating hormone receptor using.JournalofObstetrics&GynaecologyResearch, 40(2): 501-508.
[8] Hong, S., Zhang, X., Chen, J., Zhou, J., Zheng, Y., & Xu, C. (2013). Targeted gene silencing using a follicle-stimulating hormone peptide-conjugated nanoparticle system improves its specificity and efficacy in ovarian clear cell carcinoma in vitro.JournalofOvarianResearch, 6(1): 80.
[9] Jiang, X., Dias, J. A., & He, X. (2014). Structural biology of glycoprotein hormones and their receptors: insights to signaling.Molecular&CellularEndocrinology, 382(1): 424-451.
[10] Ghosalkar, J. D., & Mahale, S. D. (2006). Detailed analysis of the region 9-30 of rat follicle stimulating hormone receptor: identification of peptide 20-30 as a potential hormone binding inhibitor.Peptides, 27(11): 2,894-2,900.
[11] Beatty, J. D., Beatty, B. G., & Vlahos, W. G. (1987). Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay.JournalofImmunologicalMethods, 100(1-2): 173-179.
[12] De, G. E., Handelberg, F. M. A., Vynck, S., Loris, R., Wyns, L., & Muyldermans, S. (2004). Chemical basis for the affinity maturation of a camel single domain antibody.JournalofBiologicalChemistry, 279(51): 53,593-53,601.
[13] Westhoff, W. E., Slootstra, J. W., Puijk, W. C., Van, L. L., Schaaper, W. M., & Oonk, H. B., et al. (1997). In vitro inhibition of the biological activity of follicle-stimulating hormone by anti-peptide antisera representing the human follicle-stimulating hormone beta subunit sequence 33-53.BiologyofReproduction, 56(2): 460-468.
[14] Dattatreyamurty, B., & Jr, R. L. (1993). Functional properties of polyclonal antibodies raised against the n-terminus region (residues 9-30) of the follicle-stimulating hormone (fsh) receptor: significance of this receptor region in fsh recognition and signal transduction.Endocrinology,133(4): 1,593-1,601.
[15] Nelson, A. L., Dhimolea, E., & Reichert, J. M. (2010). Development trends for human monoclonal antibody therapeutics.NatureReviewsDrugDiscovery, 9(10): 767-774.
[16] Agris, P. F., Guenther, R. H., Sierzputowska-Gracz, H., Easter, L., Smith, W., & Hardin, C. C., et al. (1992). Solution structure of a synthetic peptide corresponding to a receptor binding region of fsh (hfsh-β 33-53).TheProteinJournal, 11(5): 495-507.
[17] Meher, B. R., Dixit, A., Bousfield, G. R., & Lushington, G. H. (2014). Glycosylation effects on fsh-fshr interaction dynamics: a case study of different FSH glycoforms by molecular dynamics simulations.PlosOne, 10(9):.
Analysis of the Binding Effect of Follicle Stimulating Hormone Peptide and Different Fragments of Extracellular Domain
ZHAO Ting,XI Ou-yan,QIN Rui-ping,QIU Lin-lin,MA Xiao-lin,LI Jiang-wei
(Xinjiang Key Laboratory of Biological Resources and Genetic Engineering / College of Life Science and Technology, Xinjiang University, Urumqi 830046, China)
【Objective】 The FSH33-53 peptide binds to its receptor FSHR and activates the downstream signal as a FSH functional peptide. However, its specific binding position on the receptor is unclear. The aim of this study is to elucidate the binding region of the FSH33-53 peptide on the receptor FSHR in the hope of providing a basis for FSH-based vaccine design.【Method】The extracellular domain(ECD)and leucine-rich repeat (LRR) of follicle-stimulating hormone receptor was amplified by polymerase chain reaction (PCR) and constructed recombinant plasmids pET22b-FSHR-ECD and pET22b-FSHR-LRR. Protein FSHR-ECD and FSHR-LRR were obtained by expression and purification. FSHR9-30-KLH. was obtained by peptide synthesis, and binding and affinity of receptor fragments with FSH33-53 peptide were detected by ELISA method. 【Result】The proteins FSHR-ECD and FSHR-LRR were successfully expressed and purified and their relative molecular mass (MR) was 43 and 32kda., respectively. When the receptor was 0.5 μg / mL and the ligand was 2.5 μg / mL, the three proteins were bound to the FSH33-53 peptide. The affinity of ELISA to detect the ligand and ligand was 0.21 × 10-6, 0.45 × 10-6and 0.056 × 10-6mol / L, respectively.【Conclusion】The binding of LRR fragment to FSH33-53 peptide is stronger than that of the other two fragments.
FSH33-53 peptides; LRR; FSHR9-30 peptides; ECD,affinity
Li jiang-wei(1967-),male,professor,research fild :Molecular immunology.(E-mail) jwli67@sina.com
10.6048/j.issn.1001-4330.2017.07.014
2017-05-11
国家自然科学基金项目“抗卵泡刺激素受体纳米抗体的制备及其在肿瘤分子显像和抗血管治疗中的作用”(81260333)
赵婷(1990-),女 ,河南驻马店人,硕士研究生,研究方向为生物化学与分子生物学,(E-mail)183210738@qq.com
李江伟(1967-),男,教授,研究方向为分子免疫学,(E-mail)jwli67@sina.com
S188;Q786
A
1001-4330(2017)07-1284-07
Supported by: National Natural Science Foundation of China "Preparation of Nano Antibody against Follicle Stimulating Hormone Receptor and Its Role in Tumor Molecular Imaging and Angiogenesis Therapy(81260333)