祝秉东,马澜,刘勋,牛红霞,白春香,李菲
兰州大学基础医学院病原生物学研究所,兰州 730000
·综述·
结核分枝杆菌蛋白亚单位疫苗与疫苗诱导的T细胞免疫记忆研究进展
祝秉东,马澜,刘勋,牛红霞,白春香,李菲
兰州大学基础医学院病原生物学研究所,兰州 730000
牛分枝杆菌减毒活疫苗——卡介苗(bacillus Calmette-Guérin,BCG)对预防严重的儿童结核病有效,但其免疫保护效率随儿童年龄增长而降低。BCG不能提供终身免疫保护可能与其诱导的记忆性T细胞主要是寿命较短的效应记忆性T细胞有关。新型结核分枝杆菌蛋白亚单位疫苗将有效的抗原有机组合起来,在适宜的疫苗佐剂辅助下诱导Th1型免疫应答。动物实验表明,增加抗原谱可有效提高亚单位疫苗的保护效率。更重要的是,亚单位疫苗在体内持续时间较短,可诱导寿命较长的中央记忆性T细胞,提供比BCG更持久的免疫保护力。记忆性T细胞的分化受抗原特性与剂量、细胞因子、转录因子及雷帕霉素等的调控。对亚单位疫苗及其诱导的免疫记忆进行研究将对新型结核分枝杆菌疫苗的设计与评价产生积极影响。
结核分枝杆菌;疫苗;亚单位疫苗;免疫记忆;T细胞
结核病(tuberculosis)是由结核分枝杆菌(Mycobacteriumtuberculosis)感染引起的慢性传染性疾病,其患病人数和死亡人数长期居高不下。2014年全球新增结核病约960万例,其中约150万例死亡[1]。卡介苗(bacillus Calmette-Guérin,BCG)是目前许多国家批准应用于人体预防结核病的唯一疫苗。研究表明,BCG接种虽可预防严重的儿童结核病,但对成人结核病的预防效果不佳[2]。因此,研发旨在增强机体长期抗结核免疫保护的新型疫苗和免疫策略迫在眉睫。现阶段国内外研发的结核分枝杆菌疫苗主要包括:①活菌疫苗,包括改良BCG和结核分枝杆菌减毒活疫苗。②全菌灭活疫苗,如灭活的母牛分枝杆菌和草分枝杆菌疫苗。③亚单位疫苗,包括DNA疫苗、蛋白/多肽疫苗和病毒载体疫苗等。本文所述亚单位疫苗特指在佐剂辅助下的蛋白抗原疫苗。
1.1 保护性抗原的筛选与融合蛋白疫苗的构建
1.1.1 生长期抗原的筛选与疫苗构建 早在1995年,Andersen等在小鼠实验中发现结核分枝杆菌的培养滤液蛋白可识别结核分枝杆菌感染活化的T细胞,其中以Ag85B和早期分泌抗原靶6 kDa蛋白(early secretory antigenic target of 6 kDa,ESAT-6)最强。此外,人们发现BCG缺失的ESAT-6和MPT64抗原可诱导豚鼠皮肤发生明显的迟发型超敏反应[3]。ESAT-6为早期分泌蛋白,能诱导强烈的T细胞免疫应答,并提供一定的抗结核免疫保护[2]。Ag85复合物包括相对分子质量为30 000~32 000的3种蛋白(Ag85A、Ag85B和Ag85C),是结核分枝杆菌和BCG的主要分泌性蛋白,在结核分枝杆菌H37Rv毒株中占分泌蛋白总量的30%。由于Ag85复合物可诱导很强的Th1型免疫应答,现阶段很多临床前和临床试验中的新型结核分枝杆菌疫苗均包含Ag85组分[2,4]。其他一些抗原如Mtb10.4、Mtb8.4、Rv1789、Rv2220和Rv3478可诱导较强的免疫保护力,后三者与ESAT-6-Ag85B联合诱导出的免疫保护水平近似于BCG[5]。通过研究ESAT-6家族蛋白的免疫原性,研究人员构建了早期分泌抗原ESX二聚体EsxD-EsxC、ExsG-EsxH和ExsW-EsxV,三者联合(H65疫苗)也可诱导出与BCG近似的保护效果[6]。
1.1.2 潜伏期抗原的应用与多期抗原疫苗的研究 结核分枝杆菌在体内进入潜伏期后,抗原表达与增殖期有所不同。由于被感染的细菌包含增殖期和休眠期,且可相互转化[7],所以理想的结核分枝杆菌疫苗不但要针对增殖期细菌,还要能针对休眠期结核分枝杆菌产生免疫应答。已报道的免疫原性较强的潜伏期抗原有Rv2660c和HspX。将潜伏相关抗原Rv2660c与Ag85B-ESAT-6蛋白H1[8]融合,构建新疫苗H56[9],可达到甚至超过BCG的免疫保护效果,还可应用于结核潜伏感染的治疗,协助机体清除潜伏感染细菌。另一项研究将潜伏相关抗原Rv1813与其他3个结核分枝杆菌抗原(Rv2608、Rv3619、Rv3620)联合构建亚单位疫苗ID93,也达到与BCG相近的保护效果[10]。本课题组将融合蛋白疫苗EAMM(融合结核分枝杆菌生长期抗原ESAT-6、Ag85B、Mtb8.4)与MH(融合结核分枝杆菌潜伏相关抗原HspX和生长期抗原Mtb10.4)联合应用,可显著降低结核分枝杆菌攻击后的脾和肺组织的细菌载量,达到与BCG相同的保护效果[11]。进一步分别将EAMM与潜伏感染相关抗原HspX及RV2626c融合,构建融合蛋白疫苗LT69[12]和LT70[13],小鼠毒力株攻击保护实验表明,该疫苗长期(免疫30周后)保护效率强于BCG。除蛋白抗原,结核分枝杆菌细胞壁糖脂组分也可激活CD1限制性T细胞及γδT细胞,具有免疫保护作用。限于篇幅,在此不展开讨论。
1.2 结核分枝杆菌疫苗佐剂的研究
结核分枝杆菌感染人体后主要寄生在巨噬细胞内。与抗胞外菌感染需诱导体液免疫不同,抗胞内菌感染疫苗需诱导有效的T细胞免疫应答[14]。铝佐剂是目前唯一用于临床的疫苗佐剂,主要介导体液免疫,对以细胞免疫为主的疾病效果不佳,因此亟需研发可诱导细胞免疫的新型佐剂。新型佐剂常由载体和免疫激活剂两部分组成。免疫激活剂多为Toll样受体(Toll-like receptor,TLR)激动剂,可通过激活天然免疫影响获得性免疫应答的种类和方向,从而增强疫苗效应。对于结核分枝杆菌亚单位疫苗,现阶段进入临床试验的佐剂有4个:①AS01E,是含有单磷脂A(monophosphoryl lipid A,MPL)和皂角苷(QS21)的油包水乳剂,其中MPL是TLR4的激动剂[15]。②IC31,由阳离子肽KLKL(5)KLK和合成的寡聚脱氧核苷酸1(oligodeoxynucleotide 1,ODN1)构成,其中ODN1为TLR9的激动剂[16-17]。③GLA-SE,是TLR4的合成激动剂GLA在角鲨烯水溶液中配制成的乳液[18]。④CAF01,由阳离子脂质体二甲基双十八烷基铵(dimethyldioctadecyl ammonium,DDA)和6,6′-二十二酸酯海藻糖(trehalose-6,6′-dibehenate,TDB)构成,其中TDB为分枝杆菌细胞壁成分6,6′-双分枝菌酸海藻糖(trehalose-6-6′-dimycolate,TDM)的合成类似物,具有激活TLR和T细胞的作用[19]。阳离子脂质体DDA是有效的疫苗载体,可自组装成双层脂质体囊泡。利用其表面为正电荷的特性,可吸附至带负电荷的细胞表面,从而将包裹或结合的蛋白和DNA抗原呈递给抗原呈递细胞(antigen-presenting cell,APC)。结果DDA可直接呈递内吞抗原进入细胞质,并通过融合胞膜或交叉呈递,诱导CD8+T细胞免疫应答。表1列出目前进入临床试验的结核分枝杆菌亚单位疫苗抗原及其佐剂。
表1 进入临床试验的结核分枝杆菌蛋白亚单位疫苗
Tab.1Mycobacteriumtuberculosissubunit vaccine candidates in clinical trails
VaccineTargetAntigen CharacterofantigenDeliverysystemPhaseReferencesID93/GLA-SEPreventive/Postexposure/TherapeuticRv2608Rv3619Rv3620Rv1813PPEfamilyproteinVirulencefactorLatency-associatedproteinGLA-SEI[10,18]H1/IC31Preventive/PostexposureAg85BESAT-6MycolyltransferaseVirulencefactorIC31IIa[8,16-17]H1/CAF01Preventive/PostexposureAg85BESAT-6MycolyltransferaseVirulencefactorCAF01IIa[8-9,19]H4/IC31PreventiveAg85BTB10.4Mycolyltransferase,VirulencefactorIC31IIa[16]M72/AS01EPreventive/PostexposureRv1196Rv0125PPEfamilyproteinPeptidaseAS01EIIa[15,20]H56/IC31Preventive/Postexposure/TherapeuticAg85BESAT-6Rv2660cMycolyltransferaseVirulencefactorLatency-associatedproteinIC31IIa[9,16]
2.1 记忆性CD8+/ CD4+T细胞的发育和分化
由于记忆性T细胞(memory T cell,TM)研究以CD8+T细胞的发育和分化较多,以下有关TM的发育调控以CD8+T细胞为主。病原体感染和抗原刺激后,T细胞扩增,分化为不同的亚群,主要分为效应性T细胞(effector T cell,Teff)和TM。Teff主要分布在感染部位和外周,具有较强的免疫学活性,但维持时间较短。机体建立免疫记忆,产生再次免疫应答主要依靠TM。TM根据分化程度、存在部位和存活时间,分为中央记忆性T细胞(central memory T cell,TCM)和效应记忆性T细胞(effector memory T cell,TEM)。TCM具有淋巴结归巢受体(CCR7和CD62L),主要存在于淋巴结,存活时间长,受抗原再次刺激时产生白细胞介素2(interleukin 2,IL-2)能力强,能大量增殖,增殖的T细胞转化为TEM和Teff。TEM主要存在于外周,受抗原再次刺激时主要分泌γ干扰素(interferon γ,IFN-γ)等细胞因子。与TCM相比,TEM增殖能力较弱,存活时间较短。TEM和TCM的表面分子标记分别为CD44hi/CD62Llo/CCR7lo和CD44hi/CD62Lhi/CCR7hi[21]。近年来发现TM有新的亚型,如有人提出了具有自我更新能力的干细胞样记忆性 T 细胞(stem cell memory T cell,TSCM),其分子表型为CD44loCD62LhiSca-1hi,再次受抗原刺激时可分化为TEM和TCM[22]。在外周组织器官中也发现组织定居记忆性T细胞(tissue-resident memory T cell,TRM)[23]。近期研究报道小鼠TEM和TCM的表面分子标记分别为CD44+CD62L-CCR7-KLRG1+和CD44+CD62L+CCR7+KLRG1-;TSCM和TRM的分子表型分别为CD44-CD62L+KLRG1-CD103-CD69-Sca-1+[24-25]和CD44+CD62L-KLRG1-CD103+CD69+CCR7-[26]。
CD4+T细胞功能较CD8+T细胞更为复杂,其免疫记忆形成过程与CD8+T细胞有相似性。研究发现,受感染刺激后几乎所有CD4+Teff均会产生相应的TM,再次感染后TM又可分化为同一类型的Teff[27]。
2.2 影响TM发育和分化的因素
2.2.1 抗原呈递特性决定TM的分化方向 抗原特性、抗原剂量和刺激持续时间被认为是影响CD8+TM发育和分化的首要因素。在流感病毒感染模型中,低剂量短期抗原刺激有利于CD8+T细胞向TCM转化;反之,高剂量持续抗原刺激促使T细胞向TEM甚至Teff转化[28]。结核分枝杆菌融合蛋白H56疫苗研究发现,一定范围内低剂量抗原免疫反而诱导持久的免疫保护力[9]。本课题组在结核分枝杆菌亚单位疫苗LT69的研究中也观察到同样现象,即低剂量抗原诱导的免疫记忆更持久,表现出更高的保护效力[12]。
2.2.2 CD4+T细胞和细胞因子对CD8+TM发育和分化的调节作用 CD4+T细胞被认为对CD8+TM的发育和分化发挥重要作用,CD4+T细胞缺陷小鼠和灵长类动物再次受病原体感染后CD8+T细胞扩增明显减少[29-30]。CD4+T细胞可能通过天然免疫作用[29]和分泌IL-2等细胞因子调节CD8+T细胞的分化。TM的分化和维持还需细胞因子IL-7、IL-15的参与。在IL-7和IL-15受体缺失的情况下,流感病毒感染不能诱导抗原特异的CD8+T细胞分化,表明IL-7和IL-15是TM分化所必需的细胞因子[31]。IL-2和IL-15通过其受体CD122发挥作用。研究表明,弱的CD122信号为T细胞存活提供信号,有利于TCM的分化;中等强度的CD122信号使T细胞向TEM分化;而强的CD122信号则促使T细胞向末端Teff分化[32]。
2.2.3 转录因子对TM分化的影响 外因和内因对T细胞的分化调控最终大多通过转录因子的作用实现。通过生物信息学分析,人们发现了许多可调控T细胞发育和分化的转录因子,并证实了一些转录因子的作用[33]。已发现和证实调节CD8+TM分化的转录因子有Tcf7、kif2、Bach2、Bcl-6、Blimp-1、c-Myc、Id2、Id3、NFAT、NF-κB、Notch 1、Notch 2、Tbet、STAT3等。其中,Blimp-1与存活期短的Teff分化有关。Blimp-1通过抑制Id3启动子下调Id3表达而发挥调节作用;增强Id3表达可恢复短期存活效应细胞的生存时间,增强再次免疫应答[34]。Id2/Id3缺失会导致CD8+Teff和TM丧失,Id3高表达预示T细胞向长期存活的TM分化[35]。在STAT3突变患者中,TM相关转录因子Bcl-6降低,导致CD4+和CD8+TCM增殖和分化活性降低,从而易被各种病毒、细菌和真菌感染。因此,STAT3也是调节T细胞免疫记忆的重要转录因子[36]。Tcf7是Wnt信号通路的下游转录因子,激活Wnt/β-catenin信号通路,可促进CD8+T细胞向多能记忆干细胞(multipotent memory stem cell)(CD44loCD62LhiSca-1hiCD122hiBcl-2hi)分化[22]。生物信息学分析发现,Id3、Bach2和Tcf7等10个转录因子与其他转录因子有广泛的相互作用,为较关键的转录调控因子。
此外,哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)和磷脂酰肌醇3激酶(phosphatidylinositol 3-kinase,PI3K)/AKT信号通路活化会促进T细胞向末端Teff分化[37]。传统的免疫抑制剂雷帕霉素可抑制mTOR信号通路,使T细胞向TM分化。在肿瘤疫苗和BCG免疫过程中加入雷帕霉素可促进TCM分化[38]。mTOR信号的调节分子Tsc1在单核细胞增多性李斯特菌感染引起的CD8+TM分化中发挥重要作用。Tsc1参与免疫功能和细胞代谢的转录调节,是机体建立再次免疫应答和促进CD8+T细胞向TM分化的关键因子[39-40]。
2.2.4 其他 其他因素也会影响TM的分化,如炎症反应、趋化因子和调节性T细胞等。疫苗佐剂对TM的分化也有重要影响。例如,佐剂通过延缓抗原在体内的降解释放可诱导TM形成。细胞因子、雷帕霉素等新型佐剂更可使人们有目的地对T细胞的分化加以调控。但TM分化是一个复杂的过程,对其调控的认识需不断研究和完善。本课题组应用细胞因子IL-28B下调调节性T细胞后,虽然短期抗感染效应增强,但疫苗诱导的长期免疫记忆水平下降[41],提示TM的发育调节较为复杂,在诱导更多Teff和TEM分化的同时,反而减弱了TCM的产生。
值得注意的是,对T细胞免疫记忆尤其是TEM和TCM的研究主要在急性病毒感染中获得。在结核分枝杆菌等慢性感染中,TM的分化和抗感染作用可能与急性感染不尽相同。例如,在急性感染中IL-7、IL-2、IL-15能促进T细胞增殖和免疫记忆的维持;在疟疾引起的慢性感染中,IL-2被发现具有刺激细胞增殖和增强再次免疫应答的作用,IL-7虽能增强CD4+TM增殖,但不能增强再次免疫应答水平[42]。
2.3 结核分枝杆菌亚单位疫苗诱导的免疫记忆特征
Th1和Th17型CD4+T细胞、CD8+T细胞、γδT细胞及CD1限制性T细胞均参与机体抗结核免疫应答,本文侧重描述CD4+Th1细胞和CD8+T细胞的免疫记忆。结核分枝杆菌蛋白亚单位疫苗Ag85B-ESAT-6/CAF01[9]、M72[20]、H56[9]和H65[6]等可诱导多功能CD4+TM,这些多功能T细胞受抗原刺激可分泌IFN-γ、肿瘤坏死因子α(tumor necrosis factor α,TNF-α)和IL-2等细胞因子,与疫苗诱导的长期免疫保护作用相关。蛋白亚单位疫苗诱导的CD4+T细胞是一种以分泌IL-2为特征的TCM[43],而BCG免疫后持续存在的活菌诱导CD4+T细胞分化为TEM,主要分泌TNF-α和IFN-γ[11]。动物实验发现,结核分枝杆菌亚单位疫苗Ag85B-ESAT-6/CAF01和H56诱导的免疫保护时间较BCG长[9]。本课题组也发现亚单位疫苗LT69和LT70诱导的长期免疫保护力要高于BCG[12-13],可能与其诱导的TM亚型有关。在牛结核模型中也发现BCG诱导的TM维持时间短,免疫保护时间也短[44]。敲除BCG菌株尿素酶C基因(ureC),并重组李斯特菌溶胞素基因(hly),构建rBCG ΔureC∷hly,与传统的BCG相比,该重组BCG在体内持续时间短,能促使更多TM尤其是CD4+TCM产生。疫苗免疫后分选出小鼠体内抗原特异性CD4+TCM,过继转移给未免疫小鼠,攻毒实验证实CD4+TCM在抗结核免疫中具有非常重要的作用[45]。
BCG初始免疫后,应用亚单位疫苗加强免疫被认为可延长和增强机体抗结核分枝杆菌感染的能力。然而,近期以痘苗病毒为载体的MVA85A临床试验表明,MVA85A并未明显增强BCG的免疫保护力[46]。MVA85A “失败”的原因可能与以下因素有关:①抗原谱窄,仅Ag85A一个抗原不足以诱导全面的免疫保护。②未激活足够的TM。对T细胞表型和功能的研究表明,MVA85A强化BCG免疫后,Teff数量明显增加,但TCM数量未见增加[47]。③强化免疫方案有待改进。亚单位疫苗强化免疫方案关系到疫苗激活T细胞的类型,不合理的方案可能会诱导更多Teff,而TCM并未增多,反而可能减少。因此,相关方案还需进一步深入研究。此外,有研究比较了蛋白亚单位疫苗与病毒载体疫苗诱导免疫记忆的差异,发现蛋白疫苗H28(Ag85B-TB10.4-Rv2660c)可激活分泌TNF-α和IL-2的CD4+T细胞,而痘苗病毒载体疫苗MVA28主要诱导分泌IFN-γ的T细胞。BCG初免后分别用H28和MVA28强化免疫,H28较MVA28疫苗诱导的保护时间更长,毒株攻击后病理损伤也较轻[48],提示结核分枝杆菌融合蛋白疫苗较病毒载体疫苗能诱导更长的免疫记忆,其机制可能与诱导更多的TCM有关。
不同类型TM在抗结核免疫保护中所起的作用还有待细致研究。TCM和TEM诱导的保护作用差异可能与所采用的动物模型、检测时间、攻毒剂量和方式等有关。抗原持续刺激可激活更多的TEM而表现出较高的免疫保护效应,但TEM维持时间不够长,其长期保护效率往往有所下降。维持时间较长的TCM是否一定具有有效的抗结核保护作用?不同研究结论也不完全相同。例如,有研究报道雷帕霉素可促进BCG免疫小鼠TM的分化,并显著提高抗结核水平[38];也有报道指出IL-15处理增加了BCG诱导的CD8+TM,但保护效率未见提高[49]。因此,如何延长免疫保护力是结核分枝杆菌疫苗的关键问题,仍需进行深入研究。
卡介苗和结核分枝杆菌亚单位疫苗诱导不同类型的TM。从已有的研究报道看,结核分枝杆菌亚单位疫苗倾向于诱导TCM。疫苗免疫过程中,疫苗剂量与免疫策略、细胞因子和转录因子等均对TM分化具有调节作用。如何调控免疫应答向TM分化,从而提高结核分枝杆菌疫苗的免疫保护作用有待深入研究。结核分枝杆菌亚单位疫苗及其免疫记忆特征的研究,对新型结核分枝杆菌疫苗的设计和评价具有重要意义。
[1] Zumla A, George A, Sharma V, Herbert RH; Baroness Masham of Ilton, Oxley A, Oliver M. The WHO 2014 global tuberculosis report—further to go [J]. Lancet Global Health, 2015, 3(1): e10-e12.
[2] Andersen P, Doherty TM. The success and failure of BCG—implications for a novel tuberculosis vaccine [J]. Nat Rev Microbiol, 2005, 3(8): 656-662.
[3] Kalra M, Khuller GK, Sheikh JA, Verma I. Evaluation of Mycobacterium tuberculosis specific RD antigens for delayed type hypersensitivity responses in guinea pig [J]. Indian J Exp Biol, 2010, 48(2): 117-123.
[4] Andersen P, Kaufmann SHE. Novel vaccination strategies against tuberculosis [J/OL]. Cold Spring Harb Perspect Med, 2014. http://perspectivesinmedicine.cshlp.org/content/4/6/a018523.full.
[5] Derrick SC, Yabe IM, Yang A, Kolibab K, Hollingsworth B, Kurtz SL, Morris S. Immunogenicity and protective efficacy of novel Mycobacterium tuberculosis antigens [J]. Vaccine, 2013, 31(41): 4641-4646.
[6] Knudsen NP, Nørskov-Lauritsen S, Dolganov GM, Schoolnik GK, Lindenstrøm T, Andersen P, Agger EM, Aagaard C. Tuberculosis vaccine with high predicted population coverage and compatibility with modern diagnostics [J]. Proc Natl Acad Sci USA, 2014, 111(3): 1096-1101.
[7] Zhang Y. Advances in the treatment of tuberculosis [J]. Clin Pharmacol Ther, 2007, 82(5): 595-600.
[8] Weinrich Olsen A, van Pinxteren LA, Meng Okkels L, Birk Rasmussen P, Andersen P. Protection of mice with a tuberculosis subunit vaccine based on a fusion protein of antigen 85B and ESAT-6 [J]. Infect Immun, 2001, 69(5): 2773-2778.
[9] Aagaard C, Hoang T, Dietrich J, Cardona PJ, Izzo A, Dolganov G, Schoolnik GK, Cassidy JP, Billeskov R, Andersen P. A multistage tuberculosis vaccine that confers efficient protection before and after exposure [J]. Nat Med, 2011, 17(2): 189-194.
[10] Baldwin SL, Reese VA, Huang PW, Beebe EA, Podell BK, Reed SG, Coler RN. Protection and long-lived immunity induced by the ID93/GLA-SE vaccine candidate against a clinical Mycobacterium tuberculosis isolate [J]. Clin Vaccine Immunol, 2016, 23(2): 137-147.
[11] Kaveh DA, Carmen Garcia-Pelayo M, Hogarth PJ. Persistent BCG bacilli perpetuate CD4 T effector memory and optimal protection against tuberculosis [J]. Vaccine, 2014, 32(51): 6911-6918.
[12] Niu H, Peng J, Bai C, Liu X, Hu L, Luo Y, Wang B, Zhang Y, Chen J, Yu H, Xian Q, Zhu B. Multi-stage tuberculosis subunit vaccine candidate LT69 provides high protection against Mycobacterium tuberculosis infection in mice [J]. PLoS One, 2015, 10(6): e0130641.
[13] Liu X, Peng J, Hu L, Luo Y, Niu H, Bai C, Wang Q, Li F, Yu H, Wang B, Chen H, Guo M, Zhu B. A multistage Mycobacterium tuberculosis subunit vaccine LT70 including latency antigen Rv2626c induces long-term protection against tuberculosis [J]. Hum Vaccin Immunother, 2016, 12(7): 1670-1677.
[14] Seder RA, Hill AV. Vaccines against intracellular infections requiring cellular immunity [J]. Nature, 2000, 406(6797): 793-798.
[15] Garçon N, Chomez P, Van Mechelen M. GlaxoSmithKline Adjuvant Systems in vaccines: concepts, achievements and perspectives [J]. Expert Rev Vaccines, 2007, 6(5): 723-739.
[16] Schellack C, Prinz K, Egyed A, Fritz JH, Wittmann B, Ginzler M, Swatosch G, Zauner W, Kast C, Akira S, von Gabain A, Buschle M, Lingnau K. IC31, a novel adjuvant signaling via TLR9, induces potent cellular and humoral immune responses [J]. Vaccine, 2006, 24(26): 5461-5472.
[17] van Dissel JT, Arend SM, Prins C, Bang P, Tingskov PN, Lingnau K, Nouta J, Klein MR, Rosenkrands I, Ottenhoff TH, Kromann I, Doherty TM, Andersen P. Ag85B-ESAT-6 adjuvanted with IC31 promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in naïve human volunteers [J]. Vaccine, 2010, 28(20): 3571-3581.
[18] Duthie MS, Coler RN, Laurance JD, Sampaio LH, Oliveira RM, Sousa AL, Stefani MM, Maeda Y, Matsuoka M, Makino M, Reed SG. Protection against Mycobacterium leprae infection by the ID83/GLA-SE and ID93/GLA-SE vaccines developed for tuberculosis [J]. Infect Immun, 2014, 82(9): 3979-3985.
[19] Davidsen J, Rosenkrands I, Christensen D, Vangala A, Kirby D, Perrie Y, Agger EM, Andersen P. Characterization of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6,6′-dibehenate)—a novel adjuvant inducing both strong CMI and antibody responses [J]. Biochim Biophys Acta, 2005, 1718(1-2): 22-31.
[20] Idoko OT, Owolabi OA, Owiafe PK, Moris P, Odutola A, Bollaerts A, Ogundare E, Jongert E, Demoitié MA, Ofori-Anyinam O, Ota MO. Safety and immunogenicity of the M72/AS01 candidate tuberculosis vaccine when given as a booster to BCG in Gambian infants: an open-label randomized controlled trial [J]. Tuberculosis (Edinb), 2014, 94(6): 564-578.
[21] Lanzavecchia A, Sallusto F. Understanding the generation and function of memory T cell subsets [J]. Curr Opin Immunol, 2005, 17(3): 326-332.
[22] Gattinoni L, Zhong XS, Palmer DC, Ji Y, Hinrichs CS, Yu Z, Wrzesinski C, Boni A, Cassard L, Garvin LM, Paulos CM, Muranski P, Restifo NP. Wnt signaling arrests effector T cell differentiation and generates CD8+memory stem cells [J]. Nat Med, 2009, 15(7): 808-813.
[23] Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus [J]. Nat Immunol, 2009, 10(5): 524-530.
[24] Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, Almeida JR, Gostick E, Yu Z, Carpenito C, Wang E, Douek DC, Price DA, June CH, Marincola FM, Roederer M, Restifo NP. A human memory T cell subset with stem cell-like properties [J]. Nat Med, 2011, 17(10): 1290-1297.
[25] Busch DH, Fräßle SP, Sommermeyer D, Buchholz VR, Riddell SR. Role of memory T cell subsets for adoptive immunotherapy [J]. Semin Immunol, 2016, 28(1): 28-34.
[26] Gerlach C, Rohr JC, Perié L, van Rooij N, van Heijst JW, Velds A, Urbanus J, Naik SH, Jacobs H, Beltman JB, de Boer RJ, Schumacher TN. Heterogeneous differentiation patterns of individual CD8+T cells [J]. Science, 2013, 340(6132): 635-639.
[27] Tubo NJ, Fife BT, Pagan AJ, Kotov DI, Goldberg MF, Jenkins MK. Most microbe-specific naïve CD4+T cells produce memory cells during infection [J]. Science, 2016, 351(6272): 511-514.
[28] Shen CH, Talay O, Mahajan VS, Leskov IB, Eisen HN, Chen J. Antigen-bearing dendritic cells regulate the diverse pattern of memory CD8 T-cell development in different tissues [J]. Proc Natl Acad Sci USA, 2010, 107(52): 22587-22592.
[29] Yao S, Huang D, Chen CY, Halliday L, Wang RC, Chen ZW. CD4+T cells contain early extrapulmonary tuberculosis (TB) dissemination and rapid TB progression and sustain multieffector functions of CD8+T and CD3- lymphocytes: mechanisms of CD4+T cell immunity [J]. J Immunol, 2014, 192(5): 2120-2132.
[30] Sun JC, Bevan MJ. Defective CD8 T cell memory following acute infection without CD4 T cell help [J]. Science, 2003, 300(5617): 339-342.
[31] Shen CH, Ge Q, Talay O, Eisen HN, García-Sastre A, Chen J. Loss of IL-7R and IL-15R expression is associated with disappearance of memory T cells in respiratory tract following influenza infection [J]. J Immunol, 2008, 180(1): 171-178.
[32] Castro I, Yu A, Dee MJ, Malek TR. The basis of distinctive IL-2- and IL-15-dependent signaling: weak CD122-dependent signaling favors CD8+T central-memory cell survival but not T effector-memory cell development [J]. J Immunol, 2011, 187(10): 5170-5182.
[33] Hu G, Chen J. A genome-wide regulatory network identifies key transcription factors for memory CD8+T-cell development [J/OL]. Nat Commun, 2013.http://www.nature.com/articles/ncomms3830.
[34] Ji Y, Pos Z, Rao M, Klebanoff CA, Yu Z, Sukumar M, Reger RN, Palmer DC, Borman ZA, Muranski P, Wang E, Schrump DS, Marincola FM, Restifo NP, Gattinoni L. Repression of the DNA-binding inhibitor Id3 by Blimp-1 limits the formation of memory CD8+T cells [J]. Nat Immunol, 2011, 12(12): 1230-1237.
[35] Yang CY, Best JA, Knell J, Yang E, Sheridan AD, Jesionek AK, Li HS, Rivera RR, Lind KC, D’Cruz LM, Watowich SS, Murre C, Goldrath AW. The transcriptional regulators Id2 and Id3 control the formation of distinct memory CD8+T cell subsets [J]. Nat Immunol, 2011, 12(12): 1221-1229.
[36] Siegel AM, Heimall J, Freeman AF, Hsu AP, Brittain E, Brenchley JM, Douek DC, Fahle GH, Cohen JI, Holland SM, Milner JD. A critical role for STAT3 transcription factor signaling in the development and maintenance of human T cell memory [J]. Immunity, 2011, 35(5): 806-818.
[37] Lucas CL, Kuehn HS, Zhao F, Niemela JE, Deenick EK, Palendira U, Avery DT, Moens L, Cannons JL, Biancalana M, Stoddard J, Ouyang W, Frucht DM, Rao VK, Atkinson TP, Agharahimi A, Hussey AA, Folio LR, Olivier KN, Fleisher TA, Pittaluga S, Holland SM, Cohen JI, Oliveira JB, Tangye SG, Schwartzberg PL, Lenardo MJ, Uzel G. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency [J]. Nat Immunol, 2014, 15(1): 88-97.
[38] Jagannath C, Khan A, Bakhru P, Soudani E, Lewis D. Induction of central memory to BCG vaccine in mice through rapamycin (P4300) [J/OL]. J Immunol, 2013. http://www.jimmunol.org/content/190/1_Supplement/54.19.abstract?sid=effd9bda-280f-49c8-b75d-9369a38c127b.
[39] Shrestha S, Yang K, Wei J, Karmaus PW, Neale G, Chi H. Tsc1 promotes the differentiation of memory CD8+T cells via orchestrating the transcriptional and metabolic programs [J]. Proc Natl Acad Sci USA, 2014, 111(41): 14858-14863.
[40] Guzzetta G, Kirschner D. The roles of immune memory and aging in protective immunity and endogenous reactivation of tuberculosis [J]. PLoS One, 2013, 8(4): e60425.
[41] Luo Y, Ma X, Liu X, Lu X, Niu H, Yu H, Bai C, Peng J, Xian Q, Wang Y, Zhu B. IL-28B down-regulates regulatory T cells but does not improve the protective immunity following tuberculosis subunit vaccine immunization [J]. Int Immunol, 2016, 28(2): 77-85.
[42] Stephens R, Seddon B, Langhorne J. Homeostatic proliferation and IL-7R alpha expression do not correlate with enhanced T cell proliferation and protection in chronic mouse malaria [J]. PLoS One, 2011, 6(10): e26686.
[43] Lindenstrøm T, Knudsen NP, Agger EM, Andersen P. Control of chronic Mycobacterium tuberculosis infection by CD4 KLRG1-IL-2-secreting central memory cells [J]. J Immunol, 2013, 190(12): 6311-6319.
[44] Thom ML, McAulay M, Vordermeier HM, Clifford D, Hewinson RG, Villarreal-Ramos B, Hope JC. Duration of immunity against Mycobacterium bovis following neonatal vaccination with bacillus Calmette-Guérin Danish: significant protection against infection at 12, but not 24, months [J]. Clin Vaccine Immunol, 2012, 19(8): 1254-1260.
[45] Vogelzang A, Perdomo C, Zedler U, Kuhlmann S, Hurwitz R, Gengenbacher M, Kaufmann SH. Central memory CD4+T cells are responsible for the recombinant bacillus Calmette-Guérin ΔureC∷hly vaccine’s superior protection against tuberculosis [J]. J Infect Dis, 2014, 210(12): 1928-1937.
[46] Tameris MD, Hatherill M, Landry BS, Scriba TJ, Snowden MA, Lockhart S, Shea JE, McClain JB, Hussey GD, Hanekom WA, Mahomed H, McShane H; MVA85A 020 Trial Study Team. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial [J]. Lancet, 2013, 381(9871): 1021-1028.
[47] Dintwe OB, Day CL, Smit E, Nemes E, Gray C, Tameris M, McShane H, Mahomed H, Hanekom WA, Scriba TJ. Heterologous vaccination against human tuberculosis modulates antigen-specific CD4+T-cell function [J]. Eur J Immunol, 2013, 43(9): 2409-2420.
[48] Billeskov R, Christensen JP, Aagaard C, Andersen P, Dietrich J. Comparing adjuvanted H28 and modified vaccinia virus Ankara expressing H28 in a mouse and a non-human primate tuberculosis model [J]. PLoS One, 2013, 8(8): e72185.
[49] Tang C, Yamada H, Shibata K, Yoshida S, Wajjwalku W, Yoshikai Y. IL-15 protects antigen-specific CD8+T cell contraction after Mycobacterium bovis bacillus Calmette-Guérin infection [J]. J Leukoc Biol, 2009, 86(1): 187-194.
. ZHU Bingdong, E-mail: bdzhu@lzu.edu.cn
Progress on tuberculosis subunit vaccine and memory T cells
ZHU Bingdong, MA Lan, LIU Xun, NIU Hongxia, BAI Chunxiang, LI Fei
InstituteofPathogenBiology,SchoolofBasicMedicalSciences,LanzhouUniversity,Lanzhou730000,China
AttenuatedMycobacteriumbovisbacillus Calmette-Guérin (BCG) is effective for the prevention of severe tuberculosis infection in childhood, but its protective efficiency shrinks along with children growing up. BCG persisted for a long time after vaccination, therefore it mainly induces short-lived effector memory T cells. This may be the reason why BCG can’t provide long-term protection. Novel tuberculosis subunit vaccine composed of effective antigens with suitable adjuvants could induce Th1 type cell-mediated immune responses and provide protection against tuberculosis. Animal experiments showed that expanding the spectrum of antigens could improve the protective efficacy of subunit vaccine effectively. Moreover, subunit vaccine has been proven to induce long-lived central memory T cells, which helps to provide a longer-term protective immunity compared with BCG. The differentiation of memory T cells is regulated by antigen characteristic and dose, cytokines, transcription factors, and drugs like rapamycin,etc. The study on the subunit vaccine and vaccine-induced immune memory will be helpful to the design and evaluation of novel tuberculosis vaccines.
Mycobacteriumtuberculosis; Vaccine; Subunit vaccine; Immune memory; T lymphocyte
国家自然科学基金(31470895)
祝秉东
2016-06-24)