周宝+++杨现民
【摘 要】人工智能是全球新一轮科技革命和产业变革的着力点,已经在电商零售、医疗健康、交通、个人助理多个领域得到广泛应用。人工智能同样在教育领域拥有较大应用潜力,有望在未来学校教学与管理上发挥重要作用,具体表现为维护校园安全、辅助教师教学、变革学习范式、优化学校管理四个方面。同时,由于学校教学与管理的独特性和复杂性,人工智能应用也面临推广运行难、与现有管理平台对接难以及教育数据安全等挑战。
【关键词】人工智能;未来教育;未来学校;创新变革;挑战
【中图分类号】G434 【文献标识码】A
【论文编号】1671-7384(2017)07-0012-03
近年来,世界各国高度重视人工智能技术的发展,相继发布了相关研究报告。2016年10月,美国白宫发布了《为人工智能的未来做好准备》和《国家人工智能研究与发展战略计划》两份重要报告。2016年11月,英国政府发布《人工智能:未来决策制定的机遇与影响》报告。2017年3月,国务院总理李克强发表2017政府工作报告,指出要加快培育壮大包括人工智能在内的新兴产业,“人工智能”首次被写入政府工作报告。当前,人工智能正逐渐融入电商零售、医疗健康、交通以及个人助理等多个领域,并展现出巨大的应用空间。人工智能在教育领域同样拥有巨大的应用潜力,随着知识表示方法、机器学习与深度学习、自然语言处理、智能代理、情感计算等关键技术的发展,人工智能将在教育领域发挥越来越大的作用[1]。
人工智能在教育中的典型应用主要集中在智能导师辅助个性化教与学、教育机器人等智能助手、居家学习的儿童伙伴、实时跟踪与反馈的智能测评、教育数据的挖掘与智能化分析、学习分析与学习者数字肖像六大方向[1],已经表现出巨大的应用潜力。学校作为教育活动的重要组织场所之一,人工智能将为学校的管理与教学带来变革性的影响,主要表现在四大方面:维护校园安全、辅助教师教学、变革学习范式以及优化学校管理。
维护校园安全
校园安全是顺利开展学校教育活动的基础,也是教育改革和发展的基本保障。《国家中长期教育改革和发展规划纲要(2010-2020年)》指出,要“切实维护教育系统和谐稳定,深入开展平安校园、文明校园、绿色校园、和谐校园创建活動,为师生创造安定有序、和谐融洽、充满活力的工作学习生活环境”[2]。计算机视觉与机器人技术的发展使得人工智能维护校园安全成为可能,其将在非法人员识别、消防安全预警、活动事故防护三个方面发挥重要作用。
1. 非法人员识别
部署保安机器人将是未来学校保证维护校园安全的重要措施之一。保安机器人能通过眼部的图像采集设备采集进入校园人员的面部信息,识别当前人员身份,若未检测到相关人员信息,系统则会通知学校的安保人员进行身份验证、登记等工作。同时,位于校园各处的保安机器人还将实时监控是否有陌生人通过非正规途径进入校园,检测到相关行为之后,则会通知学校安保人员进行处理。此外,位于学校门口的保安机器人还将采集学生的面部信息,与信息库中的学生信息相比对,确定学生身份,并记录学生到校与离校时间,确保学生在校期间的安全。
2. 消防安全预警
未来学校的消防安全预警系统包含了感烟探测器、感温探测器、火焰探测器、可燃气体探测器等多种感应器,同时通过摄像设备实时采集图像信息,分析画面中是否出现明火、烟雾等现象。其综合图像分析与探测器感知,判断是否有火灾现象发生。此外,系统通过实时采集校园内人员的行为数据,与数据库中消防安全危险行为做比对,分析是否有相关危险行为发生。若危险行为发生,则会通知学校安防人员。在火灾发生时,拥有智能搜救技术的消防机器人将会代替人进入火灾发生区,通过生命探测仪,自动感应、搜索、识别被困人员,将其救出火灾发生区。消防机器人的部署很大程度上避免了人员进入火灾发生区受到二次伤害现象的发生,其机动性超越了现有的消防安全系统,在很大程度上保证了校园内师生生命和财产安全。
3. 活动事故防护
目前,校园课间活动的伤害事故主要表现在拥挤踩踏伤害、追逐打闹伤害、危险游戏伤害等三个方面。基于人工智能的活动事故防护系统通过校园内的摄像设备实时采集师生行为数据,通过与数据库中活动事故危险行为模型相比对,分析判断是否有危险行为发生。若相关行为发生,系统则会将相关危险行为发生的地点、类型等发送给学校的安防人员,提醒安防人员采取相应措施。
辅助教师教学
随着图像识别、语音识别、自然语言处理等技术的发展,越来越多的人工智能工具被应用于教育领域,成为教师教学的得力助手。教育机器人和智能作业测评工具的出现大大减轻了教师的负担,提高了教师教学的效率。
1. 辅助备课
备课是真实教学实践的预演,是应用教师知识并发展教师知识的过程。其既是确保教学质量的条件,也是教师专业发展的途径[3],是教师教学的重要组成部分。备课机器人能够通过语音识别记录教师话语信息,利用自然语言处理技术分析整合教师话语信息,识别教师要求。备课机器人根据教师提供的教学目标、教学重难点、学生的基础知识等,在相关学科的知识库中进行资源的搜索与整合,形成电子教案。同时,根据教案内容为教师提供课堂测试习题以及上课所需课件。教师只需要根据所教班级的学生特点与自己的教学习惯,对教案、测试习题以及课件稍作调整即可应用于教学。
2. 智能作业测评
自然语言处理技术的进步使得作业自动批改成为可能。科大讯飞将“讯飞超脑”计划的阶段性研究成果“全学科阅卷”技术应用于考试,实现阅卷过程的数据化与自动化,在将教师从简单重复的阅卷工作中解放出来的同时,完成对考试数据的采集[4]。基于人工智能的作业评测系统可对作文、阅读等主观题进行语义识别并提出修改意见,根据学生的作业结果为教师自动生成详细的学情报告。智能作业评测技术的应用将有效分担教师的教学压力,显著提高教学效率,教师能够更多地专注于与学生互动、教学设计和专业发展。
3. 辅助课堂管理
在未来,教辅机器人将走进教室,辅助学生解决学习中遇到的难题。教辅机器人能够识别学生身份,读取学生当天所学课程信息以及学生在课堂的行为数据,为学生提供个性化解题方案奠定基础。教辅机器人通过语音识别获取学生问题信息,利用自然语言处理技术分析整合学生话语信息。然后,教辅机器人通过人脸识别采集学生的面部信息,综合面部表情、姿态和语调通过情感计算技术分析目前学生的情绪状态,综合学生的情绪状态和行为数据确定学生当前学习状态。教辅机器人依托优秀教师授课资源库,智能搜索相关答案,针对不同学习状态的学生采取不用的解题风格。此外,教辅机器人将收集到的学生行为数据上传到学生管理系统,辅助教师等进行学生的日常管理工作。
变革学习范式
学习范式是指特定时代的学习共同体所共有的学习理念、学习方式,并对学习者的学习态度、学习行为产生积极的引导作用,以促进学习的有效进行[5]。人工智能技术的发展使自适应学习系统真正地为教育所用,为学习所用,人工智能将使现有的学习范式走向自适应学习。
自适应学习系统在本质上是一类支持个别化学习的在线学习环境。它针对个体在学习过程中的差异性(因人、因时)而提供适合个体特征的学习支持,包括个性化的学习资源、学习过程和学习策略等[6]。基于人工智能的自适应学习系统将整合自适应内容、自适应评估和自适应序列三种工具。自适应内容通过分析学生对问题具体的回答,为学生提供个性化的内容反馈和学习资源推送。自适应序列利用一定的算法和预测性分析,基于学生的学习表现,持续收集数据。其中在数据收集阶段,自适应序列会将学习目标、学习内容与学生互动集成起来,再由模型计算引擎对数据进行处理以备使用。自适应评估可根据学生回答问题的正确与否,及时改变和调整测评的标准。
优化学校管理
学校是教育的核心单元,高效的学校管理是学校开展各项工作并得以高效运行的重要保障[7]。人工智能的融入将使未来学校的管理工作更加高效,使学校更好地服务于教师的教学与学习者的学习。其将在考务管理、教师管理、学生管理三方面发挥重要作用。
1. 考务管理
在未来的学校中,监考机器人将代替监考人员进行考务工作,很大程度上节省学校考务管理方面的人力资源。监考机器人通过内置于眼部的摄像头采集学生的面部信息,与数据库中学生信息比对,确定学生身份,自动完成签到。其通过内置于手臂端的金属探测器,扫描学生全身,檢测学生是否带有作弊物品。监考机器人通过摄像头、红外感知等确定学生位置以及教室内的桌椅等位置,规划行动路径,分发和收集试卷。此外,监考机器人还将通过位于眼部的摄像头实时采集学生行为数据,与数据库中作弊行为实时对比分析,如果学生有作弊行为发生,则会立即制止,维护考场纪律。
2. 教师管理
教师管理是学校管理工作中的重要组成部分,教师评价则是教学管理中的核心部分。人工智能为教师的智能评价提供了可能。基于人工智能的教师评价系统通过教室的摄像设备实时采集教师及学生的行为数据、表情数据,通过学生的穿戴设备采集其体征数据。系统经过对教师和学生的行为数据、情绪数据和体征数据的分析(如系统与学校的学科管理系统相连通,确定教师的教学内容是否与教学大纲要求相适应,重难点是否突出,所讲述内容是否具有实用性;教师讲授知识时,根据学生的行为、情绪和体征的反应确定教师所讲授知识是否被学生理解;教师在讲授内容和组织学习活动时,语言是否规范、清晰,态度是否亲切和蔼等),最终评定教师的教学效果,并生成可视化报告,辅助学校完成对教师教学效果的评估工作。此外,系统还将通过教室的摄像设备采集教师面部信息,识别教师身份,自动记录教师的出勤情况,辅助学校的教师管理工作。
3. 学生管理
学生管理在学校管理中同样发挥着重要作用。基于人工智能的学生管理系统可通过位于学校门口以及教室的摄像设备采集学生面部信息,识别学生身份,自动记录学生的到校时间和离校时间,为学生的出勤考核提供数据支持。通过位于教室的摄像设备实时采集学生的行为数据,分析学生的课堂表现以及课余时间的同学之间的交流情况,为学生管理的班风、学风管理提供决策支持。同时,通过分析学生的学习成绩、课堂表现、课下交流情况,判断学生是否有异常行为(趋向),并及时反馈给学校管理者。此外,系统还将学生的在校情况,包括到校时间、离校时间、测试成绩、作业完成情况等反馈给学生家长,家校协同完成学生管理工作。
让机器在没有人类教师的帮助下学习,让机器像人类一样感知和理解世界,使机器具有自我意识、情感,以及反思自身处境与行为的能力,是人工智能面临的主要挑战[8]。除此之外,人工智能在教育领域中的应用目前还处于初级阶段,在学校的管理与教学应用方面仍面临着数据基础薄弱、决策和推理机制适应难、缺乏专业应用人才等挑战。
(作者单位:江苏师范大学智慧教育学院)
参考文献
闫志明,唐夏夏,秦旋等. 教育人工智能(EAI)的内涵、关键技术与应用趋势——美国《为人工智能的未来做好准备》和《国家人工智能研发战略规划》报告解析[J]. 远程教育杂志,2017(1): 26-35.
程天君,李永康. 校园安全:形势、症结与政策支持[J]. 教育研究与实验,2016(1): 15-20.
翁春敏,陈群波. 基于教师情境知识的备课研究——国外研究的视角[J]. 外国中小学教育,2015(5): 51-57.
搜狐教育. 科大讯飞吴晓如:互联网+人工智能时代的教育变革[EB/OL]. http: //www. sohu. com/a/69484549_372506,2017-6-15.
George R. Boggs. What Is the Learning Paradigm? [EB/OL]. http: //vccslitonline. cc. va. us/mrcte/learning_paradigm. html, 2017-6-13.
陈仕品,张剑平. 基于EAHAM模型的适应性学习支持系统体系结构[J]. 电化教育研究,2008(11): 53-57+82.
李刚,高莉. 为了更好地服务教学: 学校管理方式的转变[J]. 教育科学研究,2012(2): 32-34.
郑南宁. 人工智能面临的挑战[J]. 自动化学报,2016(5): 641-642.