余宝富 曾红 唐智明 廖新根 余欢 夏国明 黄黛翠 李洪波
. 论著 Original article .
创伤后肘关节外源性挛缩形成中差异表达基因及相关通路研究
余宝富 曾红 唐智明 廖新根 余欢 夏国明 黄黛翠 李洪波
目的在分子水平研究创伤后肘关节外源性挛缩的机制。方法 建立新西兰兔创伤后膝关节外源性挛缩模型,左膝经手术导致关节内骨折,并以克氏针固定 8 周为实验组,未经手术的右膝为对照组,以模拟人肘关节外源性挛缩。使用 Agilent 兔全基因芯片技术检测兔膝关节囊基因表达谱,通过比较实验组和对照组关节囊基因表达谱筛选挛缩关节的关节囊中差异表达基因,对差异基因进行注释及功能分析,并采用 Real-time RT-PCR 验证部分差异基因。结果 实验组与对照组基因表达谱相比较后筛选出差异表达基因90 个,其中表达上调 21 个,表达下调 69 个。这些差异表达基因在生化过程中主要参与调节外部的刺激反应、调控脂多糖介导的信号转导通路及正性调节生物刺激反应,在分子功能中主要参与离子及 ATP 的结合,在细胞成分中主要参与构成胞质膜小泡。这些差异基因主要涉及的通路共有 31 个,主要包括风湿性关节炎通路 ( rheumatoid arthritis )、吞噬小体通路 ( phagosome )、肌动蛋白细胞骨架调节通路 ( regulation of actin cytoskeleton ) 等。Real-time RT-PCR 结果表明,Acta2、MMP2 及 KGF 3 个差异表达基因的定量结果与基因芯片检测结果一致,均表达上调。结论 创伤后肘关节外源性挛缩的关节囊与正常关节囊相比存在差异表达基因,这些差异基因可能通过多种途径在关节挛缩的形成中发挥作用。筛选出的差异表达基因及分析出的相关信号通路可为创伤后肘关节外源性挛缩机制的进一步研究提供实验基础。
关节挛缩;肘关节;创伤;基因;信号通路;基因芯片
肘关节挛缩是指肘关节主动和 ( 或 ) 被动活动范围减少或丧失,为肘部常见的并发症之一。根据挛缩的原因可分为外源性、内源性以及混合性三类。其中典型的外源性挛缩主要是指累及肘关节周围软组织结构,包括关节周围的关节囊、韧带及肌肉等一系列病理改变。不同程度的关节周围组织挛缩可直接导致肘关节屈伸障碍,严重影响患者的日常生活及工作。虽然近些年来对肘关节创伤的认识不断提高,治疗方法不断改进,但是创伤后肘关节挛缩的问题仍普遍存在。因此,如何预防及治疗创伤后肘关节挛缩已成为临床工作及研究的重点,解决问题的关键在于了解挛缩发生的机制。相对于正常的关节囊,创伤后挛缩的关节囊中的基因差异表达是引起关节囊挛缩的根本原因。为此,本研究根据以往研究建立新西兰兔创伤后膝关节挛缩模型[1-2],以模拟人类创伤后肘关节外源性挛缩。使用基因芯片技术对新西兰兔挛缩的膝关节囊进行差异表达基因筛选,并对其功能及参与的通路进行分析,试图在分子水平上为肘关节外源性挛缩的形成机制提供依据。
一、兔膝关节外源性挛缩模型的建立
选用健康成年 ( 12~18 个月龄 ) 的新西兰雌性大白兔 ( 3 只 ),体重约 3.5~3.8 kg。分开饲养。左膝为手术组,右膝为对照组。戊巴比妥钠耳缘静脉麻醉后,左膝处消毒,做左膝前方切口,先暴露股骨内侧髁,于侧副韧带止点近端用直径 2.0 mm 的克氏针钻孔并钻出对侧皮质。孔隙中的渗血流入膝关节以此模拟关节内骨折。随后以直径 1.5 mm 的克氏针自胫骨前方往后穿入股骨,克氏针两尾端弯曲,膝关节被固定于屈曲 150°,以此为膝关节制动模型。
二、取材
兔膝关节制动模型建立后 8 周,3 只兔克氏针无松脱,关节无感染表现,再次戊巴比妥钠耳缘静脉麻醉,左膝关节处消毒后,膝关节前方入路进入,先暴露克氏针并取出,活动膝关节可见左膝关节活动范围较右膝明显减小,提示左膝关节明显挛缩,然后切取膝关节后方关节囊组织,取下的标本立即置入液氮保存。同样方法取对侧正常组标本。
三、RNA 抽提和纯化
四、差异基因基因芯片检测
项目所用芯片为 Agilent 兔全基因 4×44K 芯片( design ID:020908 ),共有 6 个标本,需要完成6 张上述芯片。
1. 样品 RNA 的放大和标记:实验样品 RNA 采用 Agilent 表达谱芯片配套试剂盒,Low Input Quick Amp Labeling Kit,One-Color ( Cat#5190-2305,Agilent technologies,Santa Clara,CA,US ) 和标准操作流程对样品 total RNA 中的 mRNA 进行放大和标记,并用 RNeasy mini kit ( Cat#74106,QIAGEN,GmBH,Germany ) 纯化标记后的 cRNA。
2. 芯片杂交:按照 Agilent 表达谱芯片配套提供的杂交标准流程和配套试剂盒,Gene Expression Hybridization Kit ( Cat#5188-5242,Agilent technologies,Santa Clara,CA,US ),在滚动杂交炉 Hybridization Oven ( Cat#G2545A,Agilent technologies,Santa Clara,CA,US ) 中 65 ℃,10 rpm,滚动杂交 17 h,杂交 cRNA 上样量 1.65 μg,并在洗缸 staining dishes ( Cat#121,Thermo Shandon,Waltham,MA,US ) 中洗片,洗片所用的试剂为Gene Expression Wash Buffer Kit ( Cat#5188-5327,Agilent technologies,Santa Clara,CA,US )。
3. 芯片扫描:完成杂交的芯片采用 Agilent Microarray Scanner ( Cat#G2565CA,Agilent technologies,Santa Clara,CA,US ) 进行扫描,软件设置 Dye channel:Green,Scan resolution=5 μm, PMT 100%,10%,16bit。用 Feature Extraction software 10.7 ( Agilent technologies,Santa Clara,CA,US ) 读取数据,最后采用 Gene Spring Software 11.0 ( Agilent technologies,Santa Clara,CA,US ) 进行归一化处理,所用的算法为 Quantile。
4. 差异基因的筛选及分析:将扫描所得数据使用由上海伯豪有限公司提供的在线分析系统 ( SAS )进行分析:分别计算差异倍数 ( fold change,FC ) 和每个探针点的 Flag / Call 值。采用配对 t 检验比较组间数据。差异基因筛选阈值设定包括以下 2 点:( 1 ) P<0.05;( 2 ) 差异倍数 ( FC ) ≥2 或者≤0.5,并过滤掉功能未知及无注释的基因。
表1 提取的总 RNA 质检结果Tab.1 The quality inspection results of extracted total RNA
5. 数据分析:对差异基因行 GO ( gene ontology )功能分析、Pathway 分析等。GO 功能分析:由于暂时没有找到直接支持新西兰兔 EntrezGene ID 号检索的 GO 功能的分析工具,本研究将 EntrezGene ID 号转化成 UNIPROT 号,针对所有的 UNIPROT 蛋白GO 信息进行了检索,生成的 GO 注释文件在 WEGO ( http://wego.genomics.org.cn/cgi-bin/wego/index.pl ) 进行 GO 作图。根据所有检测到差异基因的 GO 数据和所有检测到基因的 GO 数据进行比对,分析 GO 富集数据,由于兔 GO 数据过少,本研究将筛选标准上调为 P<0.10,在 REVIGO ( http://revigo.irb.hr/ ) 上作图。KEGG Pathway 分析:使用 KOBAS 2.0 ( http:// kobas.cbi.pku.edu.cn/home.do ) 来做 KEGG Pathway 分析,筛选标准为 P<0.05。
那是我最后一次看到万姐,背着一个比她身体还要大的包袱。老公要下楼帮她拦辆出租车,却被她拦住了,一个人摇摇欲坠地向楼下走去。我这才发现,原来她住在我家时,竟然做了那么多的衣服。
五、Real-time RT-PCR 验证
查阅文献并结合芯片的结果,初步选择 Acta2、KGF、MMP2 基因行 Real-time RT-PCR 验证基因芯片结果。所用试剂:Real-time RT-PCR Takara kit。仪器:ABI stepone plus。实验步骤按照试剂盒进行,以 Gapdh 为内参,三复孔。所用引物:Acta2-forward ( 5’-GACAATGGCTCCGGGCTCTGT AA-3’ ),Acta2-reverse ( 5’-TGCGCTTCATCACCC ACGTA-3’ ),KGF-forward ( 5’-AAACGAGGCAAAG TAAAAGGGAC-3’ ),KGF-reverse ( 5’-CCATTTAGC TGATGCGTATGTGTTG-3’ ),MMP2-forward ( 5’-C ATGTCTACTATTGGCGGGAAC-3’ ),MMP2-reverse ( 5’-TTCTTCGTGTAGGTGTAAATGGG-3’ ),Gapdhforward ( 5’-GCACGGTCAAGGCTGAGAAC-3’ ),Gapdh-reverse ( 5’-TGGTGAAGACGCCAGTGG A-3’ )。采用 2-ΔΔCt法比较实验组和对照组间的差异[3]。使用配对 t 检验比较两组间的差异,P<0.05为差异有统计学意义。
表2 芯片实验质控结果Tab.2 The quality inspection results of gene chip
一、提取的总 RNA 质检
共 6 份标本,除 Trauma 2 以外,2100 RIN 均≥7.0,28 s / 18 s 均≥0.7,且 260 / 280 nm 的比值均>1.8 ( 表1 )。Trauma 2 标本虽然 2100 RIN ( 值为6.8 )<7.0,但接近 7.0,提示 RNA 部分降解,但28 s / 18 s>0.7,260 / 280 nm 比值>1.8,考虑对芯片实验的表达检测影响不大,因此仍进行后续实验。
二、芯片实验质控情况
基因芯片实验中,所有标本 CV 值均<10%,检出率均>60% ( 表2 ),提示芯片质量合格。
三、差异基因筛选结果
筛选出两组间差异表达基因 90 个,与对照组正常膝关节囊相比,创伤后的关节囊中表达上调的差异基因有 21 个 ( 表3 ),表达下调的差异基因有69 个 ( 表4 )。
四、GO 功能分析
GO 结果见图1,2。在 REVIGO 上作图结果显示,这些差异基因在生化过程中主要参与调节外部的刺激反应、调控脂多糖介导的信号转导通路及正性调节生物刺激反应,在分子功能中主要参与离子及 ATP 的结合,在细胞成分中主要参与构成胞质膜小泡。
五、KEGG Pathway 分析
结果显示差异基因涉及到的通路有 31 个。主要包括风湿性关节炎通路 ( rheumatoid arthritis )、吞噬小体通路 ( phagosome )、肌动蛋白细胞骨架调节通路( regulation of actin cytoskeleton ) 等。31 条通路结果见表5 ( P≤0.05 )。
六、Real-time RT-PCR 对差异表达基因的验证结果
在差异基因中,选择与创伤后关节囊挛缩明显相关的 3 个基因进行验证,Acta2、MMP2 及 KGF 均上调,与基因芯片结果一致。
表3 表达上调的差异基因Tab.3 The up-regulated differentially expressed genes
表4 表达下调的差异基因Tab.4 The down-regulated differentially expressed genes
描述ITI-HC2 Oryctolagus cuniculus inter-alpha-trypsin inhibitor heavy chain2 ( ITI-HC2 ), mRNA [ NM_001082647 ]NCF1 Oryctolagus cuniculus neutrophil cytosolic factor 1 ( NCF1 ), mRNA [ NM_001082102 ]CD4 Oryctolagus cuniculus CD4 molecule ( CD4 ), mRNA [ NM_001082313 ]AOAH Oryctolagus cuniculus acyloxyacyl hydrolase ( neutrophil ) ( AOAH ), mRNA [ NM_001082025 ]CCL2 Oryctolagus cuniculus chemokine ( C-C motif ) ligand 2 ( CCL2 ), mRNA [ NM_001082294 ]APOBEC1 Oryctolagus cuniculus apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 ( APOBEC1 ), mRNA [ NM_001082341 ]CAPS Oryctolagus cuniculus calcyphosine ( CAPS ), mRNA [ NM_001082644 ]CD38 Oryctolagus cuniculus CD38 molecule ( CD38 ), mRNA [ NM_001082683 ]RLA-A3 Oryctolagus cuniculus MHC class I antigen-like ( RLA-A3 ), mRNA [ NM_001190434 ]LOC100101599 Oryctolagus cuniculus cathepsin W mRNA, partial cds [ EF472895 ]LOC100344030 Oryctolagus cuniculus cathepsin L1 ( LOC100344030 ), mRNA [ XM_002708256 ]SLC5A9 Oryctolagus cuniculus solute carrier family 5 ( sodium/glucose cotransporter ), member 9 ( SLC5A9 ), mRNA [ NM_001082699 ]CYBB Oryctolagus cuniculus cytochrome b-245 beta polypeptide ( CYBB ), mRNA [ NM_001082100 ]ACP5 Oryctolagus cuniculus acid phosphatase 5, tartrate resistant ( ACP5 ), mRNA [ NM_001081988 ]MYH11 Oryctolagus cuniculus myosin, heavy chain 11, smooth muscle ( MYH11 ), mRNA [ NM_001082308 ]IFNG Oryctolagus cuniculus interferon, gamma ( IFNG ), mRNA [ NM_001081991 ]IL8 Oryctolagus cuniculus interleukin 8 ( IL8 ), mRNA [ NM_ 001082293 ]NCF4 Oryctolagus cuniculus neutrophil cytosolic factor 4, 40 kDa ( NCF4 ), mRNA [ NM_001082654 ]FPR Oryctolagus cuniculus N-formyl peptide receptor ( FPR ), mRNA [ NM_001082314 ]SLC15A2 Oryctolagus cuniculus solute carrier family 15 ( H+/peptide transporter ), member 2 ( SLC15A2 ), mRNA [ NM_001082700 ]KCTD16 Oryctolagus cuniculus potassium channel tetramerisation domain containing 16 (LOC100357562), mRNA [XM_002710279]PLN Oryctolagus cuniculus phospholamban ( PLN ), mRNA [ NM_001082621 ]LOC100009317 Oryctolagus cuniculus heme carrier protein 1 ( LOC100009317 ), mRNA [ NM_001082630 ]FYB Oryctolagus cuniculus FYN binding protein ( FYB-120/130 ) ( LOC100350748 ), mRNA [ XM_002713989 ]LOC100008880 Oryctolagus cuniculus lipophilin AL2 ( LOC100008880 ), mRNA [ NM_001082139 ]LPXN Oryctolagus cuniculus leupaxin ( LPXN ), mRNA [ NM_ 001082048 ]OLFM3 Oryctolagus cuniculus olfactomedin 3 ( LOC100344242 ), mRNA [ XM_002715827 ]CX3CR1 Oryctolagus cuniculus chemokine ( C-X3-C motif ) receptor 1 ( CX3CR1 ), mRNA [ NM_001082134 ]ZAN Oryctolagus cuniculus zonadhesin ( ZAN ), mRNA [ NM_001082081 ]THBD Oryctolagus cuniculus thrombomodulin ( THBD ), mRNA [ NM_001082144 ]TNFAIP8L2 Oryctolagus cuniculus tumor necrosis factor, alpha-induced protein 8-like 2 ( TNFAIP8L2 ), mRNA [ NM_001171296 ]CTLA4 Oryctolagus cuniculus cytotoxic T-lymphocyte-associated protein 4 ( CTLA4 ), mRNA [ NM_001082685 ]CHM-I Oryctolagus cuniculus chondromodulin-I precursor ( CHM-I ), mRNA [ NM_001082040 ]LOC100101588 Oryctolagus cuniculus caspase 1 ( LOC100101588 ), mRNA [ XM_002708417 ]CASQ2 Oryctolagus cuniculus calsequestrin 2 ( cardiac muscle ) ( CASQ2 ), nuclear gene encoding mitochondrial protein, mRNA [ NM_001101691 ]CYP8B1 Oryctolagus cuniculus cytochrome P450, family 8, subfamily B, polypeptide 1 ( CYP8B1 ), mRNA [ NM_001082622 ]MSR1 Oryctolagus cuniculus macrophage scavenger receptor 1 ( MSR1 ), mRNA [ NM_001082248 ]LOC100009479 Oryctolagus cuniculus potassium channel subunit Kv 1.2 ( LOC100009479 ), mRNA [ NM_001082722 ]GRO-A Oryctolagus cuniculus GRO ( GRO-A ), mRNA [ NM_ 001082386 ]TACC3 Oryctolagus cuniculus transforming, acidic coiled-coil containing protein 3 ( TACC3 ), mRNA [ NM_001082146 ]基因符号
图1 差异表达上调基因的 GO 分析结果Fig.1 The GO analysis results of the up-regulated expressed differential genes
图2 差异表达下调基因的 GO 分析结果Fig.2 The GO analysis results of the down-regulated expressed differential genes
表5 差异基因主要参与的通路Tab.5 The main related pathways of differential genes
本研究建立模型研究创伤后关节外源性挛缩的机制,其中较多分子与人类的研究结果一致,证明了模型建立的合理性。如本研究中,挛缩的关节囊MMP1、MMP2 表达上调,而 Cohen 等[4]发现在人体中,创伤后挛缩的肘关节囊中 MMP1、MMP2 的表达水平也显著上调。本研究使用 Agilent 兔全基因芯片技术筛选挛缩关节的关节囊中差异表达基因,筛选出两组间差异表达基因 90 个,表达上调的差异基因有 21 个,表达下调的差异基因有 69 个,表明创伤后肘关节外源性挛缩的关节囊中存在差异表达基因。通过对差异基因的功能分析发现,它们参与对外部刺激反应的调节、调控脂多糖介导的信号转导通路、生物刺激反应的正调节、离子结合、ATP结合及组成胞质膜小泡等。这些过程与文献报道一致[5-6],如调节外部刺激反应,机体的损伤和疼痛可引起神经末梢释放神经肽 P 物质及降钙素 G 相关肽类物质,从而引起肥大细胞脱颗粒。肥大细胞含有促纤维化颗粒,包括血小板生长因子 A ( platelet derived growth factor A,PDGFA ),内皮缩血管素 1( endothelin1,ET1 ),成纤维细胞生长因子 ( fibroblast growth factor,FGF ) 和转化生长因子-β ( transforming growth factor-β,TGF-β1 ) 等,肥大细胞通过脱颗粒,释放上述因子,从而促进肌成纤维细胞的分化及增殖[7]。在动物及人类的创伤后挛缩肘关节中,肥大细胞、含神经肽的神经纤维的数目 4 周内便开始上升,而在慢性阶段仍保持升高的状态[8]。肥大细胞因此连接创伤后的急性炎症期和随后的挛缩期,也因此可能成为创伤后肘关节挛缩的干预靶点。酮替芬可以减少肥大细胞及肌成纤维细胞的数量,并且相对地可以减少关节 42%~52% 的挛缩程度。因此,酮替芬可能是人类皮肤损伤后减少伤口挛缩及纤维化的有效措施,并且不影响正常的愈合过程[9]。Hildebrand 等[8]发现兔子的创伤后膝关节挛缩的急、慢性阶段及人类创伤后挛缩的肘关节慢性阶段,关节囊中的肌成纤维细胞、肥大细胞、神经肽的含量显著上升,而上述过程必然伴随着能量的代谢,与本研究结构中参与 ATP 结合是一致的。差异基因的功能结果提示创伤后关节囊挛缩的发生、发展与多种基因差异表达、多个分子生物学过程共同所致。KEGG Pathway 分析显示,差异基因涉及的通路有 31 个,主要包括风湿性关节炎通路、吞噬小体通路、肌动蛋白细胞骨架调节通路等。如α-平滑肌肌动蛋白 ( α-SMA ) 是肌成纤维细胞胞内表达的一种肌动蛋白,α-SMA 可通过细胞膜上的整合素作用于细胞外基质,从而影响细胞外基质的构成[10-11]。因此对肌动蛋白细胞骨架调节通路的干预能够预防关节的挛缩。KEGG Pathway 分析结果表明这些通路共同作用,构成创伤后关节囊挛缩的发生发展中复杂的网络调控系统。为了验证基因芯片的可靠性,本研究从所筛选的差异基因中挑选了Acta2、MMP2 及 KGF 3 个有意义的差异基因进行Real-time RT-PCR 验证,其结果与基因芯片结果趋势一致,从而确保了基因芯片结果的可靠性。
图3 Real-time RT-PCR 结果显示 Acta2 基因表达上调 ( t = 6.092,P = 0.026 )图4 Real-time RT-PCR 结果显示 KGF 基因表达上调 ( t = 8.199,P = 0.014 )图5 Real-time RT-PCR 结果显示 MMP2 基因表达上调 ( t = 4.758,P = 0.041 )Fig.3 The results of Real-time RT-PCR showed Acta2 was up-regulated in expression ( t = 6.092, P = 0.026 )Fig.4 The results of Real-time RT-PCR showed KGF was up-regulated in expression ( t = 8.199, P = 0.014 )Fig.5 The results of Real-time RT-PCR showed that expression of MMP2 was up-regulated ( t = 4.758, P = 0.041 )
本研究也有一定的局限性,首先,本研究的样本较少,增加兔子的数量可使研究结果更可靠。其次,挛缩的关节囊中,分子的表达水平会随着时间的改变而改变[12],因此可使用更多数量的兔子,分别固定后 8 周、16 周及 32 周再测定差异表达基因。再者,该研究是在 RNA 水平揭示基因表达,细胞调控蛋白的表达包括在转录水平和翻译水平,RNA 水平未必与蛋白水平一致的,因此,有必要进行蛋白水平的研究来证实本研究的结果。最后,可直接用来分析兔子基因的数据库很少,对该研究数据的分析也有一定的影响。
创伤后关节挛缩发生的机理非常复杂,是多基因多通路共同作用的结果。创伤后肘关节挛缩仍是临床中常见的难以预防及治疗的问题,通过对创伤后肘关节挛缩的机制研究,可指导创伤后肘关节或者是肘关节松解后的靶向干预来预防肘关节挛缩或复发。目前主要观点认为,肌成纤维细胞-肥大细胞-神经肽纤维化轴在创伤后肘关节挛缩的发生发展中起着最主要的作用,而对该轴的干预主要集中在酮替芬对肥大细胞的稳定作用上[9,13-14]。本研究筛选出的差异基因及分析出的可能通路,将为今后研究创伤后肘关节外源性挛缩的预防及治疗提供更多的可参考靶点。
[1]Hildebrand KA, Sutherland C, Zhang M. Rabbit knee model ofpost-traumatic joint contractures: the long-term natural history of motion loss and myofibroblasts[J]. J Orthop Res, 2004, 22(2):313-320.
[2]Hildebrand KA, Zhang M, Salo PT, et al. Joint capsule mast cells and neuropeptides are increased within four weeks of injury and remain elevated in chronic stages of posttraumatic contractures[J]. J Orthop Res, 2008, 26(10):1313-1319.
[3]Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C (T) method[J]. Nat Protoc, 2008, 3(6): 1101-1108.
[4]Cohen MS, Schimmel DR, Masuda K, et al. Structural and biochemical evaluation of the elbow capsule after trauma[J]. J Shoulder Elbow Surg, 2007, 16(4):484-490.
[5]Schäffer M, Beiter T, Becker HD, et al. Neuropeptides: mediators of inflammation and tissue repair[J]? Arch Surg, 1998, 133(10):1107-1116.
[6]Duggan AW, Morton CR, Zhao ZQ, et al. Noxious heating of the skin releases immunoreactive substance p in the substantia gelatinosa of the cat: a study with antibody microprobes[J]. Brain Res, 1987, 403(2):345-349.
[7]Gruber BL. Mast cells in the pathogenesis of fi brosis[J]. Curr Rheumatol Rep, 2003, 5(2):147-153.
[8]Hildebrand KA, Zhang M, Salo PT, et al. Joint capsule mast cells and neuropeptides are increased within four weeks of injury and remain elevated in chronic stages of posttraumatic contractures[J]. J Orthop Res, 2008, 26(10):1313-1319.
[9]Monument MJ, Hart DA, Befus AD, et al. The mast cell stabilizer ketotifen fumarate lessens contracture severity and myofibroblast hyperplasia: a study of a rabbit model of posttraumatic joint contractures[J]. J Bone Joint Surg Am, 2010, 92(6):1468-1477.
[10]Skalli O, Ropraz P, Trzeciak A, et al. A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation[J]. J Cell Biol, 1986, 103(6 Pt 2): 2787-2796.
[11]Hinz B. The myof i broblast: paradigm for a mechanically active cell[J]. J Biomech, 2010, 43(1):146-155.
[12]Hildebrand KA, Zhang M, Hart DA. Joint capsule matrix turnover in a rabbit model of chronic joint contractures: correlation with human contractures[J]. J Orthop Res, 2006, 24(5):1036-1043.
[13]Gottwald T, Coerper S, Schäffer M, et al. The mast cell-nerve axis in wound healing: a hypothesis[J]. Wound Repair Regen, 1998, 6(1):8-20.
[14]Gallant-Behm CL, Hildebrand KA, Hart DA. The mast cell stabilizer ketotifen prevents development of excessive skin wound contraction and fibrosis in red duroc pigs[J]. Wound Repair Regen, 2008, 16(2):226-233.
( 本文编辑:李慧文 )
Differentially expressed genes and related pathways of post-traumatic elbw joint extrinsic contractures
YU Bao-fu,ZENG Hong, TANG Zhi-ming, LIAO Xin-gen, YU Huan, XIA Guo-ming, HUANG Dai-cui, LI Hong-bo. The People’s Hospital of Jiangxi Province, Nanchang, Jiangxi, 330006, China
LI Hong-bo, Email: hongbolijx@163.com
ObjectiveTo study the mechanism of post-traumatic elbow joint extrinsic contracture at molecular level. Methods New Zealand rabbit model of post-traumatic knee extrinsic joint contracture was established to mimic post-traumatic elbow joint extrinsic contracture of human, of which left knees were operated on to result in intraarticular fractures and were fi xed for 8 weeks with K-wire as the experimental group. The right knees served as control group. The differentially expressed genes were screened with Agilent whole rabbit genome microarray technology by comparing gene expression prof i les of contracted joint capsules with normal ones. The functions of the differentially expressed genes were analyzed and annotated. Partial differentially expressed genes were conf i rmed by Real-time RTPCR. Results Ninety differentially expressed genes were detected between experimental group and control group, of which 21 were up-regulated and 69 down-regulated. In the analysis of differentially expressed genes, they were closely related to regulation of response to external stimulus, regulation of lipopolysaccharide-mediated signaling pathway and positive regulation of response to biotic stimulus in the function of biological process, ion binding and ATP binding in the molecular function, and cytoplasmic membrane-bounded vesicle in cellular component. There were mainly 31 pathways related to the differentially expressed genes, including rheumatoid arthritis, phagosome, regulation of actin cytoskeleton, etc. The results of Real-time RT- PCR were consistent with the results of the gene chip when tested for Acta2, MMP2 and KGF genes which were all up-regulated. Conclusions There are differentially expressed genes in the joint capsule of post-traumatic elbow joint extrinsic contracture, which may play a signif i cant role in the formation of joint contracture through multiple channels. These differentially expressed genes and related signal pathways mayprovide experimental basis for further research of post-traumatic elbow joint extrinsic contracture.
Arthrogryposis; Elbow joint; Trauma; Genes; Signal pathway; Gene chip
10.3969/j.issn.2095-252X.2017.03.007
R684
330006 南昌,江西省人民医院
李洪波,Email: hongbolijx@163.com
2016-10-13 )