杨润祺
摘要:高中数学在高考和实际生活中扮演着重要的角色,它是一门极其重要的学科,而三角函數是高中数学学习的重要环节。三角函数其实并不难,可是同学们却陷入了学习三角函数的困境,出现了种种问题,甚至有放弃学习函数的念头。三角函数和初中的函数还是区别很大的,它的思维跨度大,具有一定的抽象性,一时间,我们很难快速的掌握,这是很正常的。三角函数学不好直接关乎到我们以后数学的学习,导致我们对数学缺乏兴趣。对此,本文就三角函数的学习存在的问题进行简要分析。
关键词:高中数学;三角函数;应对策略
中图分类号G633.6
三角函数问题在我们实际生活中不是很常见,有些脱离我们的实际生活,但是它灵活多变,同学们感到难以应对。近些年来,高考命题组越来越多地考查三角函数的抽象性、恒等变换,而这些考查重点都是我们不擅长的,也就导致了三角函数学习出现了很多问题。同学们在学习三角函数问题的过程中不应有心理障碍,只要掌握一些基本的方法和策略,这样许多问题都会迎刃而解。新课程标准下,三角函数作为基本初等函数在高中数学中占有十分重要的地位,是高考考查的重点内容之一,也是高考的热点之一,在高考中,客观题和主观题均有所体现,并且以中低档题目的考查为主,对同学们来说是很重要的得分点。
一、主要的学习问题
实行新课标以来,三角函数的知识体系变化比较明显,我们高中生要采用和初中不同的学习策略才能有效地应对这一变化。在初中时期,我们接触到的函数全部是一对一型的函数,而三角函数是我们上高中以来第一次接触到的一对多型函数,它具有明显的周期性,它代表着一类函数。三角函数与其他函数知识紧密相关,学好三角函数对其他知识的学习有着巨大的指导意义。
总体来说三角函数的难度还是不大的,它渗透着数形结合的思想,掌握了这一本质特征,学好三角函数还是比较容易的。但是我们高中生学习三角函数的过程当中还是存在很多问题的。好多同学反映三角函数并非书中所述的那样简单,甚至陷入了学习三角函数的困境。因为三角函数是我高中数学的起始环节,这种困境长期持续下去,会造成更为深层次的影响,会影响我们的学习动机和对数学的学习态度。
(一)概念模糊
任何一个知识点的学习几乎都是从概念开始的,可是很多同学并没有理解三角函数的定义。直角三角形问题是三角函数问题的一部分,我们初中的时候就能轻松掌握。可是到了高中我们依然运用初中的知识去解答此类问题,虽然得到了正确的答案,但是与学习的初衷相背离。这也就间接地导致了我们对三角函数的概念的理解出现严重的偏差,甚至有些含糊不清。
(二)用错公式
公式众多,紧密联系是三角函数最大的特点。三角函数知识中涉及的公式数量非常大,包括弧度数的绝对值公式,弧长公式,扇形面积公式,诱导公式,两角和与差的正弦、余弦、正切公式,倍角公式,需要掌握的总共 22 个。三角函数的公式不仅数量多,而且变换灵活,例如诱导公式中角的奇偶性变化、正负取值,两角和与差公式中角的组合变化等,角发生变化取值就相应改变,三角函数的公式就应用了多种方式展现出来,这就让同学们寻不到规律,不知道该用什么公式解题。
(三)数学思想理解不到位
简单的三角函数蕴含着多重的数学思想,如数形结合思想、等价转化思想、函数与方程思想等。同学们经常大量的做题,而不去总结,许多数学思想根本体会不到。题做得再多,数学思想没有学到,遇到相似的问题还是无从下手。三角函数知识体系较为抽象,各个函数间密切联系、变换灵活,我们必须掌握公式的本质特征、课下勤加练习才能灵活运用。
三、简单的应对措施
(一)摒弃形式化
我们来到高中对知识的理解经常以自己经验加以判断,缺乏理性思考,我们的水平不高,对抽象的三角函数只是记住了形式,造成了生搬硬套、死记硬背的尴尬局面。我们应将公式和图像相结合的学习,注重数学结合的思想。学会单位圆的应用,运用它掌握三角函数的定义;例如,正弦函数的学习,我们学会借助图像巧妙的掌握,能画出 y = sinx的图象,通过图像观察其周期性;借助图象理解正弦函数在[0,2π]的性质等,如单调性、奇偶性等
(二)形成有效的学习方法
我们学习数学效率低,速度慢大部分原因是方法不恰当,三角函数的学习也是一样的,我们很多高中生对待三角函数不够重视,更别提方法了。三角函数各个知识点联系非常密切,可是大多数同学只是孤立的学习,不懂得把知识点串联起来,这就无法形成体系,只是混乱,不能融会贯通。所以,学习过程中,我们要懂得将知识作对比,善于复习,找到学习三角函数的有效途径。
(三)训练基本的数学技能
解决好三角函数的问题,化简很重要。它是做题的第一步,而且是最为关键的一步。许多同学做不出三角函数的题目,就在化简的过程中出现了错误,所以同学们要在课下训练化简、运算等基本技能。
三、结语
总而言之,发现自己学习三角函数的问题,结合自身的特点,制定相应的学习策略,灵活应对,学好三角函数还是较容易的。
[参考文献]
[1] 王冬岩.高中生对三角函数概念的理解[D].上海:华东师范大学,2010.
[2] 刘洋.高中数学新旧两版教科书三角函数部分的对比研究[D].长春:东北师范大学,
2008.