孕期尼古丁暴露子代大鼠饲喂高脂饮食对下丘脑
--垂体--肾上腺轴敏感性的影响及发生机制

2017-03-28 11:18董婉婷胡泽文
中国药理学与毒理学杂志 2017年1期
关键词:下丘脑尼古丁子代

何 厦,徐 丹,2,卢 娟,董婉婷,胡泽文,汪 晖,2

(1.武汉大学基础医学院药理学系,湖北武汉 430071;2.发育源性疾病湖北省重点实验室,湖北武汉 430071)

孕期尼古丁暴露子代大鼠饲喂高脂饮食对下丘脑
--垂体--肾上腺轴敏感性的影响及发生机制

何 厦1,徐 丹1,2,卢 娟1,董婉婷1,胡泽文1,汪 晖1,2

(1.武汉大学基础医学院药理学系,湖北武汉 430071;2.发育源性疾病湖北省重点实验室,湖北武汉 430071)

目的观察孕期尼古丁暴露(PNE)所致子代大鼠高脂饮食下下丘脑-垂体-肾上腺(HPA)轴应激高敏感性改变,并探讨其发生机制。方法受孕Wistar大鼠从孕9~20 d sc给予尼古丁2 mg·kg-1。自然出生仔鼠断奶后给予高脂饮食喂养至20周(PW20),其中一半仔鼠从PW17至PW20给予3周不可预计性慢性刺激(UCS)。HE染色观察组织形态学改变,放免试剂盒和ELISA分别检测大鼠血清促肾上腺皮质激素(ACTH)及皮质酮(CORT)水平,PCR检测ACTH释放激素(CRH)、精氨酸加压素(AVP)、囊泡谷氨酸转运蛋白2(VGluT2)、谷氨酸脱羧酶65(GAD65)、盐皮质激素受体(MR)、糖皮质激素受体(GR)和谷氨酸脱羧酶67(GAD67)等相关基因的mRNA表达。结果正常对照组雌、雄仔大鼠经UCS刺激后,血清ACTH和CORT分别升高了1.96倍(P<0.01),1.63倍(P<0.01)和3.24倍(P<0.01),3.54倍(P<0.01),PNE组雌、雄仔大鼠经UCS刺激后,血清ACTH和CORT分别升高了3.96倍(P<0.01),3.04倍(P<0.01)和5.98倍(P<0.01),5.22倍(P<0.01)。与UCS处理的正常对照组仔大鼠相比,UCS处理的PNE组雌、雄仔大鼠下丘脑AVP mRNA表达分别升高了2.04倍(P<0.01)和1.13倍(P<0.05),雌性下丘脑CRH mRNA表达和VGluT2/GAD65 mRNA比值分别升高了2.49倍(P<0.01)和1.14倍(P<0.01)。全部PNE组雌、雄仔大鼠海马各区均出现不同程度的病理损伤,表现为神经元数量减少、排列稀疏和细胞间隙增大。与无UCS处理的正常对照组相比,无UCS处理的PNE雌、雄仔大鼠海马MR/GR mRNA比值分别降低了88.0%和86.0%(P<0.01),GAD67 mRNA表达分别升高了1.38倍和1.97倍(P<0.05);与UCS处理的正常对照组相比,UCS处理的PNE组雌性仔大鼠海马GAD67 mRNA表达升高了2.17倍(P<0.05)。结论PNE可致高脂饮食成年子代大鼠HPA轴应激高敏感性发生,其机制可能与海马MR/GR比值失衡、GAD67表达上调,进而介导下丘脑局部潜在兴奋性增加有关。

尼古丁;海马;下丘脑-垂体-肾上腺轴;高敏感性

有关孕期尼古丁暴露(prenatal nicotine expo⁃sure,PNE)的危害已有许多相关研究,如宫外孕[1]、早产和宫内发育迟缓(intrauterine growth retardation,IUGR)[2-3],后期还可能导致出生后子代生长发育不良[4]、学习记忆损伤[5];动物实验也发现PNE子代大鼠患糖尿病和肥胖病的概率增加[6-7]。下丘脑-垂体-肾上腺轴(hypothalamic-pitu⁃itary-adrenal axis,HPA)是机体重要的神经内分泌轴。胚胎早期的不良宫内环境会导致胎儿HPA轴发育异常,成年后表现为诸多神经内分泌相关胎源性疾病易感[8]。我们的前期研究表明,PNE可导致IUGR子代HPA轴相关神经内分泌代谢改变,成年后HPA轴出现高应激敏感性现象[9]。然而PNE介导HPA轴高应激敏感性的发生机制尚不清楚。本研究采用PNE子代大鼠IUGR模型,出生后给予高脂饮食喂养并给予不可预计性慢性应激(unpredict⁃able chronic stress,UCS),观察子代大鼠HPA轴敏感性改变的现象,进一步从海马高位调节中枢调控失衡层面,探讨HPA轴高敏感性的发生机制。

1 材料与方法

1.1 药物和试剂

尼古丁(美国Sigma公司);大鼠促肾上腺皮质激素(adrenocorticotropic hormone,ACTH)放射免疫试剂〔北京生命科学技术研究所(中国北京)〕;大鼠皮质酮(corticosterone,CORT)ELISA检测试剂盒(美国R&D生物科技有限公司);Trizol(美国Invitrogen公司);PrimeScript RT-PCR Kit(大连宝生物工程有限公司);SYBR Select Master Mix(美国Applied Biosystems公司);其他试剂均为国产分析纯。

1.2 动物分组及样本处理

未交配SPF级别健康Wistar大鼠(体质量:雄性260~300 g,雌性180~220 g,(湖北省预防医学科学院实验动物中心)提供,合格证号:2008-0005。大鼠适应性喂养1周后,每晚18∶00以雌雄2∶1合笼,次晨观察雌鼠阴栓或阴道涂片,以查到阴栓或精子时间作为受孕0 d(gestational day 0,GD0)。受孕大鼠随机分为尼古丁组和正常对照组,每组9只。于GD9 sc给予尼古丁2 mg·kg-1至GD20,正常对照组给予等体积生理盐水。孕鼠自然分娩后,选取仔鼠数量在8~14只的母鼠,取每只母鼠哺乳的雄、雌性仔鼠各2只,1/2仔鼠高脂饮食喂养至出生后20周(PW20)处死,另1/2仔鼠高脂饮食喂养至PW17尾部取血200 μL而后给予3周UCS(每天8∶00随机给予一种刺激,包括禁食、禁水24 h、4℃冰水游泳、夹尾1 min、昼夜颠倒、50℃热应激5 min)。仔鼠于8∶00 am-10∶00 am断头取血并分离血清,迅速分离海马、下丘脑等组织置于-80℃的冰箱内保存备用,同时每组留取1~2个全脑组织用4%多聚甲醛溶液固定。

1.3 HE染色观察海马组织形态

成年仔鼠的固定脑组织经石蜡包埋切片后进行HE染色,光镜下观察海马形态改变。

1.4 血清ACTH及CORT浓度检测

采用ACTH放免试剂盒和CORT ELISA试剂盒分别检测大鼠血清中的ACTH和CORT含量。具体操作步骤见相应说明书。

1.5 RNA提取及实时荧光定量PCR检测

用Trizol法提取大鼠海马及下丘脑组织总RNA,并参照Prime Script RT-PCR试剂盒步骤合成cDNA,参照SYBR Premix Ex Taq试剂盒说明书进行实时定量PCR检测。检测基因包括:磷酸甘油醛脱氢酶(glyceraldehyde-3-phosphate dehy⁃drogenase,GAPDH)、促肾上腺皮质激素释放激素(ACTH releasing hormone,CRH)、精氨酸加压素(arginine vasopressin,AVP)、囊泡谷氨酸转运蛋 白 2(vesicularglutamate transporter2,VGluT2)、谷氨酸脱羧酶65(glutamic acid decar⁃boxylase 65,GAD65)、GAD67、盐皮质激素受体(mineralocorticoid receptor,MR)和糖皮质激素受体(glucocorticoid receptor,GR)。相关引物应用软件Primer Premier 5.0进行引物设计,得到的特异性序列由上海生工生物工程技术服务有限公司合成,经PAGE纯化。引物序列及PCR反应条件见表1。采用双标准曲线法来获得目的基因的相对定量结果。

1.6 统计学分析

应用SPSS19和Prism 5.0进行数据分析。所有的数据均以表示。两组间的比较采用独立样本t检验;同一组慢性刺激前、后的比较采用配对样本t检验。以P<0.05为有统计学意义。

Tab.1 Primer sequences for real-time quantitative PCR

2 结果

2.1 孕期尼古丁暴露子代大鼠饲喂高脂饮食对血清ACTH和CORT水平的影响

结果显示,UCS处理前,PNE组雌、雄性仔大鼠血清ACTH和CORT水平均显著低于正常对照组(P<0.01);UCS刺激后,PNE组雌、雄仔大鼠血清ACTH水平显著高于相应的正常对照组(P<0.01,P<0.05),雌性仔大鼠血清CORT水平显著高于相应的正常对照组(P<0.05)(表2)。UCS处理后,正常对照和PNE组雌、雄仔大鼠血清ACTH和CORT浓度均显著升高(P<0.01)。

2.2 孕期尼古丁暴露子代大鼠饲喂高脂饮食对下丘脑应激活性及兴奋/抑制性神经元标志基因表达的影响

表3结果显示,给予UCS处理的PNE组雌性仔鼠下丘脑CRH mRNA表达及雌、雄性仔大鼠下丘脑AVP mRNA表达显著高于给予UCS处理的正常对照组(P<0.01)。无UCS处理情况下,与正常对照组比,PNE组雌性仔大鼠丘脑VGluT2 mRNA和GAD65 mRNA表达均显著降低(P<0.05,P<0.01),雄性仔大鼠下丘脑VGluT2 mRNA显著降低(P<0.01),GAD65无明显改变。给予UCS处理情况下,与正常对照组相比,PNE组雌、雄性仔大鼠下丘脑GAD65 mRNA表达均显著高(P<0.01,P<0.05),VGluT2无明显改变,雌性仔大鼠下丘脑VGLUT2/GAD65比值显著升高(P<0.01)。

2.3 孕期尼古丁暴露子代大鼠饲喂高脂饮食对海马形态的影响

UCS处理和未处理的正常对照组仔大鼠海马神经元均排列紧密、细胞核染色均一;无UCS处理的PNE组雌性仔大鼠海马锥体细胞层CA1、CA2、CA3区和UCS处理的PNE组海马CA1区细胞排列疏松,细胞核染色较浅;无UCS处理UCS的PNE组雄性仔大鼠海马锥体细胞层CA3区和UCS处理的PNE组雄性仔大鼠海马DG、CA1及CA3区细胞间隙增大,排列疏松(图1)。

Tab.2 Effect of prenatal nicotine exposure(PNE)on serum ACTH and CORT level in female and male offspring rats under high fat diet

Tab.3 Effect of PNE on mRNA expression of CRH,AVP,VGluT2 and GAD65 in hypothalamus of female and male offspring rats under high fat diet

Fig.1 Effect of PNE on morphology of hippocampus in female(A)and male(B)offspring rats under high fat diet. See Tab.3 for rat treatment.DG:dentate gyrus.Arrows show the intercellular spaces dilation and nuclear staining lightness of hippocampal CAs and DG area.

2.4 孕期尼古丁暴露子代大鼠饲喂高脂饮食对海马MR和GR mRNA表达的影响

表4结果显示,无UCS处理的PNE组雌、雄性仔大鼠海马基因MR mRNA表达较无UCS处理的正常对照组显著降低(P<0.01),GR和GAD67 mRNA表达显著升高(P<0.01,P<0.05)。UCS处理的PNE组雌性仔大鼠海马MR、GR及GAD67 mRNA表达较UCS处理的正常对照组均显著升高(P<0.01,P<0.01,P<0.05);雄性仔大鼠MR和GR mRNA也显著升高(P<0.01,P<0.05),GAD67无明显改变。无UCS处理的PNE组雌、雄性仔大鼠海马MR/GR表达比值显著低于无UCS处理的正常对照组(P<0.01)。

Tab.4 Effect of PNE on mRNA expression of MR,GR and GAD67 in hippocampus of female and male offspring rats under high fat diet

3 讨论

我们的前期研究已证实,PNE出生后正常饮食的成年子代IUGR发生率增加,大鼠血清ACTH和CORT水平降低,HPA轴表现为低基础活性[10]。许多研究指出,高脂饮食可促进下丘脑室旁核CRH的合成和分泌,并增加慢性应激后肾上腺CORT的释放[11-12]。既往研究表明,PNE可能导致HPA轴功能异常,出生后高脂饮食会加重大脑损伤[13],在受到慢性应激后HPA轴功能异常更加明显[14]。本研究结果显示,UCS后,血清ACTH和CORT水平及各自增长率均明显升高,同时下丘脑CRH和AVP的表达也显著升高,这进一步证实PNE可引起正常和高脂饮食下成年子代HPA轴高应激敏感性改变。

下丘脑PVN区域的下丘脑PVN区神经内分泌小细胞(parvocellular neuroendocrine cells,PNC)通过接受来自中枢的兴奋/抑制信号,以此增加/降低CRH和AVP的合成和分泌[15]。谷氨酸(glutamic acid,Glu)能和γ-氨基丁酸(γ-aminobutyric acid,GABA)能传入信号的重塑是下丘脑PVN区兴奋/抑制失衡的潜在机制。已知Glu和GABA是脑内的两个重要的神经递质,前者通过柠檬酸循环合成,由VGluT运输至突触囊泡释放后,与突触后膜谷氨酸受体结合而发挥作用。GABA的合成关键酶为GAD其在脑内有两种同工酶GAD67和GAD65。GAD67以高饱和的全酶形式存在,与Glu有高的亲和力,参与病理条件下GABA的合成和传递,而GAD65常以无活性的辅酶形式存在于神经末梢的突触囊泡膜上,参与生理条件下GABA的突触传递[16]。VGluT2和GAD65在下丘脑组织中的分布分别与Glu能和GABA能神经末梢高度一致,并分别参与了Glu的突触传递和GABA的合成,被认为是Glu能和GABA能神经元的特异性标志物。在本研究中,UCS处理和未处理对PNE组仔大鼠下丘脑中VGLuT2基因的低表达无影响,但因给予UCS处理导致PNE组仔大鼠下丘脑中GAD65基因显著升高,使得VGLuT2/GAD65比值显著增高。由此PNE子代下丘脑存在局部的兴奋性改变,这种改变可能是介导子代成年后HPA轴高应激敏感性的主要原因。

海马是HPA轴应激反应的高位调节中枢,MR和GR分别参与基础及应激状态下HPA轴的负反馈调节[17]。MR和GR的活化可进一步激活海马相应区域的GABA能神经元,最终表现为对HPA轴的负反馈抑制信号。已有研究证实,海马区MR/GR比值降低可使海马在应激状态下对HPA轴的调节能力减弱,导致HPA轴高敏感性的发生[18]。本研究中,无UCS处理的PNE组雌、雄仔大鼠MR基因表达显著降低,GAD67表达显著升高,MR/GR比值显著降低;有UCS处理的PNE组雌、雄仔大鼠MR基因表达显著升高,雌性仔大鼠GAD67基因表达显著升高,雄性无显著差异。综合形态学上的改变,我们推测在发育过程中由于PNE暴露损伤海马发育,造成MR/GR比值失衡和海马结构、功能永久性病理改变,在此基础上机体表现出GAD67表达上调的代偿性改变,上调的GAD67表达可将海马局部的兴奋性递质Glu向抑制性递质GABA转化,在UCS后表现为海马对HPA轴负反馈减弱,进一步导致HPA轴高应激敏感性发生。

综上所述,PNE子代大鼠出生后高脂饮食可致HPA轴应激敏感性增加,其机制可能与海马MR/ GR比值失衡、GAD67基因表达代偿性上调,进而导致下丘脑局部潜在兴奋性增强,最终表现为HPA轴的高应激敏感性改变。

参考文献:

[1]Horne AW,Brown JK,Nio-Kobayashi J,Abidin HB,Adin ZE,Boswell L,et al.The association be⁃tween smoking and ectopic pregnancy:why nicotine is BAD for your fallopian tube[J].PLoS One,2014,9(2):e89400.

[2]Ward C,Lewis S,Coleman T.Prevalence of maternalsmoking and environmentaltobacco smoke exposure during pregnancy and impact on birth weight:retrospective study using Millennium Cohort[J].BMC Public Health,2007,7:81.

[3]Kamer B,Pasowska R,Grys W,Socha-Banasiak A,Kamer-Bartosińska A,Matczak-Rynkowska A,et al. Pre-and postnatal exposure of children to tobacco smoke during the first four years of life-observa⁃tions of the authors[J].Ann Agric Environ Med,2014,21(4):753-759.

[4]Holloway AC,Cuu DQ,Morrison KM,Tarnopolsky MA.Transgenerational effects of fetal and neonatal exposure to nicotine[J].Endo⁃crine,2007,31(3):254-259.

[5]Nakauchi S,Malvaez M,Su H,Kleeman E,Dang R,Wood MA,et al.Early postnatal nicotine exposure causes hippocampus-dependent memory impairments in adolescentmice:association with altered nicotinic cholinergic modulation of LTP,but not impaired LTP[J].Neurobiol Learn Mem,2015,118:178-188.

[6] Ma N,Nicholson CJ,Wong M,Holloway AC,Hardy DB.Fetal and neonatal exposure to nicotine leads to augmented hepatic and circulating triglyc⁃erides in adult male offspring due to increased expression of fatty acid synthase[J].Toxicol Appl Pharmacol,2014,275(1):1-11.

[7]Gao YJ,Holloway AC,Zeng ZH,Lim GE,Petrik JA,Lee RM.Prenatal exposure to nicotine causes postnatal obesity and altered perivascular adipose tissue function[J].Obes Res,2005,13(4):687-692.

[8]McGirr A,Diaconu G,Berlim MT,Pruessner JC,Sablé R,Cabot S,et al.Dysregulation of the sympathetic nervous system,hypothalamic-pitu itary-adrenal axis and executive function in individuals at risk for suicide[J].J Psychiatry Neurosci,2010,35(6):399-408.

[9]Xu D,Liang G,Yan YE,He WW,Liu YS,Chen LB,et al.Nicotine-induced over-exposure to maternal glucocorticoid and activated glucocorticoid metabo⁃lism causes hypothalamic-pituitary-adrenal axisassociated neuroendocrine metabolic alterations in fetal rats[J].Toxicol Lett,2012,209(3):282-290.

[10]Feng JH,Yan YE,Liang G,Liu YS,Li XJ,Zhang BJ,et al.Maternal and fetal metabonomic alterations in prenatal nicotine exposure-induced rat intra⁃uterine growth retardation[J].Mol Cell Endocrinol,2014,394(1/2):59-69.

[11]Tannenbaum BM,Brindley DN,Tannenbaum GS,Dallman MA,Meaney MJ.High-fat feeding alters bothbasaland stress-induced hypothalamicpituitary-adrenal activity in the rat[J].Am J Physiol Endocrinol Metab,1997,273(6):E1168-E1177.

[12]Shin AC,Mohankumar S,Sirivelu MP,Clay combe KJ,Haywood JR,Fink GD,et al.Chronic exposure to a high-fat diet affects stress axis func⁃tion differentially in diet-induced obese and dietresistant rats[J].Int J Obes,2010,34(7):1218-1226.

[13]Langdon KD,Clarke J,Corbett D.Long-term exposure to high fat diet is bad for your brain:exacerbation of focal ischemic brain injury[J]. Neuroscience,2011,182:82-87.

[14]Xu D,Xia LP,Zhang BJ,Shen L,Lei YY,Liu L,et al.Prenatal nicotine exposure enhances the susceptibility to metabolic syndrome in adult offspring rats fed high-fat diet via alteration of HPA axis-associ⁃atedneuroendocrinemetabolicprogramming[J]. Acta Pharmacol Sin,2013,34(12):1526-1534.

[15]Jankord R,Herman JP.Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress[J].Ann N Y Acad Sci,2008,1148:64-73.

[16]Wu H,Jin Y,Buddhala C,Osterhaus G,Cohen E,Jin H,et al.Role of glutamate decarboxylase(GAD)isoform,GAD65,in GABA synthesis and transportinto synaptic vesicles-evidence from GAD65-knockout mice studies[J].Brain Res,2007,1154:80-83.

[17]Koob GF.Brain stress systems in the amygdala and addiction[J].Brain Res,2009,1293:61-75.

[18]De Kloet ER,Derijk R.Signaling pathways in brain involved in predisposition and pathogenesis of stressrelated disease:genetic and kinetic factors affecting the MR/GR balance[J].Ann N Y Acad Sci,2004,1032:14-34.

Prenatal nicotine exposure induced high sensitivity of hypothalamic-pituitary-adrenal axis in offspring rats under high fat diet

HE Xia1,XU Dan1,2,LU Juan1,DONG Wan-ting1,HU Ze-wen1,WANG Hui1,2

(1.Department of Pharmacology,School of Basic Medical Sciences,Wuhan University, Wuhan 430071,China;2.Hubei Provincial Key Laboratory of Developmentally Originated Disease,Wuhan 430071,China)

OBJECTIVETo observe prenatal nicotine exposure(PNE)induced high sensitivity of hypo⁃thalamic-pituitary-adrenal(HPA)axis in offspring rats which were fed with a high-fat diet,and to explore the mechanism.METHODSNicotine(2 mg·kg-1per day)was injected subcutaneously to preg⁃nant Wistar rats from gestational day(GD)9 to GD20,and then the young rats were naturally delivered. After weaning,half of the offspring was fed with a high-fat diet until postnatal weeks(PW)20.The others were exposed to unpredictable chronic stress(UCS)from PW17 to PW20.The pathological changes in the hippocampus were analyzed by HE staining.The blood concentration of adrenocorticotropic hormone (ACTH)and corticosterone(CORT)was detected by RIA kits and ELISA kits,respectively.Meanwhile, real-time PCR was used to detect the mRNA expression of ACTH releasing hormone(CRH),arginine vasopressin(AVP),vesicular glutamate transporter 2(VGluT2),glutamic acid decarboxylase 65 (GAD65),mineralocorticoid receptor(MR),glucocorticoid receptor(GR)and glutamic acid decarboxylase 67(GAD67).RESULTSIn the normal control group,UCS treatment increased the level of serum ACTH and CORT 1.96 and 3.24 times in female rats,but 1.63 and 3.54 times in male rats.In the PNE group,UCS treatment increased the level of serum ACTH and CORT 3.96 and 5.98 times in female rats,but 3.04 and 5.22 times male rats.PNE increased the mRNA expression of AVP in the female and male rats 2.04 and 1.13 times in UCS treatment control group,and the mRNA expression of hypothalamus CRH and the ratio of VGLuT2/GAD65 were increased 2.49 and 1.14 times in female rats,respectively. Furthermore,the nicotine group exhibited histological changes to different degrees in the hippocampus and dentate gyrus area of the hippocampus.In the female and male nicotine groups,the mRNA ratio of hippocampal MR/GR decreased by 88.0%and 86.0%in comparison with the normal control group without UCS,and the mRNA expression of GAD67 was enhanced 1.38 and 1.97 times in female and male rats without UCS.In the female UCS treatment nicotine groups,the mRNA expression of GAD67 was increased 2.17 times compared with the UCS treatment control group.CONCLUSIONPNE can induce a high sensibility of HPA axis in offspring rats fed with a high-fat diet.The imbalance of hippo⁃campus MR/GR and the enhanced expression of GAD67 mRNA may be involved.

nicotine;hippocampus;hypothalamic-pituitary-adrenal axis;high sensibility

XU Dan,E-mail:xuyidan70188@whu.edu.cn,Tel:15972228956

R99

:A

:1000-3002-(2017)01-0080-07

10.3867/j.issn.1000-3002.2017.01.010

2016-08-01 接受日期:2016-11-29)

(本文编辑:乔虹)

国家自然科学基金(81220108026);国家科学自然基金(81371483);国家科学自然基金(81430089)

何 厦,男,硕士研究生,从事外源发育毒性研究;徐 丹,女,副教授,博士生导师,从事外源物发育毒性研究。通讯作者:徐 丹, E-mail:xuyidan70188@whu.edu.cn,Tel:15972228956

Foundation item:The project supported National Natural Science Foundation of China(81220108026);National Natural Science Foundation of China(81371483);and National Natural Science Foundation of China(81430089)

猜你喜欢
下丘脑尼古丁子代
妊娠期高血压疾病与子代心血管疾病关系研究进展
孕前肥胖、孕期增重过度与子代健康
认清尼古丁的真面目
科学家发现控制衰老开关
不同种源文冠果优良子代测定
OntheapplicationofAntConcinpre—translationofmachine
兴奋下丘脑腹外侧视前区对结节乳头体核c-Fos表达的影响及其受体途径
2,4-二氯苯氧乙酸对子代大鼠发育及脑组织的氧化损伤作用
How to Avoid Weight Gain
欧洲飞机提供尼古丁代用品