哈尔滨师范大学研究生 马正方
数学自有数学美,数学美不可抗拒。数中自有颜如玉,如玉者有圆周率。三点一四一五九,久久为功创喜剧。
有道是“无独有偶”,然而,自从圆周率被祖冲之首次发现以来,却久久孤守闺房。为圆周率寻觅一个好伙伴,笔者义不容辞啊!山重水复疑无路,踏破铁鞋无觅处,然而,柳暗花明又一村,得来全不费功夫。“10÷3.14”所得的商数和圆周率一样是无理数,堪称圆周率的好伙伴。该商数称作“类圆周率”。该商数的前45位数字如下:3.18471337579617834394904458598726114649681528;而圆周率的前45位数字是:3.1415926535897932384626433832795028841 9716939。如此这般,“类圆周率”和圆周率相互对照,可以发现有趣好玩的现象,这就是圆周率从头开始的第N个数字往往与类圆周率从头开始的第(N+1)个数字相同。例如:圆周率的第3个数字与类圆周率的第4个数字都是4;前者第9个数字与后者第10个数字都是5;前者第14个数字与后者第15个数字都是7;前者第16个数字与后者第17个数字都是3;前者第18个数字与后者第19个数字都是3。如此这般不计其数,“妇唱夫随”也。
悠悠圆周率,久久觅伙伴。今朝巧相会,恰结并蒂莲。数海弄潮儿,吃了豹子胆。算舟戏数海,深浅任你玩。
“10÷1.4142”的商数也是无理数:7.07112855324565125515 910055……,该数从头开始的第8、第9位数字是“55”,第18、第19位的数字是“55”,第26、第27位数字是“55”。如此这般,往后继续除下去,还会出现多少个“55”呢?这正是:三对五五率先出,后继五五知多少?数学世界藏奥妙,算来算去任你找。