曾金发+邱家明
摘 要:教学质量监控是教学管理的重要环节之一,教学评价的准确性可以有效提升教学质量。传统的高职院校对教学评价往往是将学生、教学督导等方面的评价内容进行简单的数据统计,缺乏对教学评价数据准确的分析,难以对教学质量的提高提供有力的参考价值。教学质量的提升需要对教学评价的全部数据进行整理和分析,并研究教学评价的方法。对高职院校教学评价的现状进行了分析,探讨分析了数据挖掘的方法和算法,提出了数据挖掘技术在高职院校教学评价中的应用途径。
关键词:数据挖掘技术;高职院校;教学评价;应用
中图分类号:G4
文献标识码:A
doi:10.19311/j.cnki.1672-3198.2016.29.119
随着高校教学信息化的不断进步,教学管理过程中积累了大量的数据。但这些数据只是简单的业务统计,并未进行整理和分析。教学评价是教学质量监控体系的重要内容之一,如何把握其内涵以及最终的目的,是教学实践过程中的难点之一。充分应用数据挖掘技术能够对教学评价过程中的大量数据进行加工处理,从而为教学管理人员提供正确的决策,促进教学质量的提升。教学评价的科学性对于教学质量的提高具有重要意义,因此利用数据挖掘技术对教学评价的数据进行分析,能够有效提高高职院校的教学质量。
1 高职院校教学评价现状
高职院校教学评价主要是教务处对每个学期教师的教学质量进行评估,一方面教务处将评价表发放给学生或是网络评价,学生根据教学质量评价表中的内容给教师评分;另一方面教学督导和同行听课后给出相应的评价,最终形成教师的教学评价最后得分。教务处将教师的得分进行排名,并确定考核的等级。这种传统的教学评价对于教学质量的提高具有一定的作用,但是仍然存在诸多弊端,影响评价的准确性。近年来高职院校越来越重视对教学的评价,但教学评价缺乏一定的科学性。
1.1 对教学评价的认识模糊
近年来,高职院校虽然越来越重视对教学的评价,但是对教学评价的意义、教学评价在教学管理中的作用认识仍比较模糊。当前部分高职院校的教学评价还停留在初级阶段,没有意识到科学的教学评价在教学管理中的重要性,因此教学评价指标的科学性有待进一步完善。
1.2 教学评价理论薄弱
很多教学管理者对教学评价的理论知识比较薄弱,同时高职院校与专业的研究机构缺乏足够的合作,致使教学评价理论缺乏系统性,教学评价理论难以发挥应有的作用。很多高职院校教学评价工作人员并未接受过专业的评价理论培训,导致教学评价只是停留在表面,难以向深层次推进。
1.3 教学评价手段比较落后
高职院校目前采用的教学评价手段比较单一,评价技术相对落后。虽然很多院校开始采用模糊数学的方法进行评价,也取得了长足的进步,但是教学评价还是沿用现成的技术,并没有根据自身的特点进行创新和改进。
2 数据挖掘的分类与算法
2.1 数据挖掘技术的分类
2.1.1 根据任务分类
根据数据挖掘技术的任务进行分类,主要包括分类模型数据挖掘、总结、聚类、关联规则、序列发现以及依赖模型和异常发现等。
2.1.2 根据方法分类
根据数据挖掘技术的方法进行分类,主要分为分类算法、关联规则算法、最近距离算法和支撑向量机算法。
决策树分类法是应用最为广泛的算法,采用自上而下的归纳方法来总结数据规律,决策树的数据总结清晰明了,并且每个节点都使用信息增益度量来选择测试属性。简单讲,这种方法就是以树形结构来体现大数据的特点和挖掘结果。决策树具有多种算法,较早的如Quinlan在1986年提出的ID3算法和Leo-Breiman所提出的CART算法。决策树算法将数据有原则的进行分类,剔除无用或者用处不大的信息,从而实现大数据整理的高效性,在预测模型中应用广泛。所谓关联规则算法是通过数据之间的关联性建立一张关系网,从而找到解决某一问题的重要数据和条件,也就是通过对某种现象的检测来获得结果。关联规则算法使大数据清晰化,能够显示有用结果,减少统计时间。同时,该方法支持间接的数据挖掘和对变长数据进行处理,它计算的消耗量是可以预见的。最近距离法(KNN)的原理是以空间中的某个向量为样本,与其相邻的空间内与其相似的向量的统计就可以用相同的方法来统一。该方法的优势在于避免了其它方法的样本不平衡状态。由于该方法主要是依靠周边邻近的样本,样本数量有限,不能通过由判别类域的方法来确定类别,所以常用于样本之间重叠或交叉较多的空间。支撑向量法是建立在统计学理论的基础上的,靠机器来完成,是现代智能化统计的雏形。其原理在于将给定的有限的数理训练样本进行准确无误的折衷,从而提高的推广能力。
2.2 数据挖掘的过程
数据挖掘其实就是不断的反馈,其重要包括数据准备阶段、数据挖掘阶段以及评估和表示阶段。
2.2.1 数据准备阶段
数据挖掘技术应用的前提是准备数据,教师教学质量评价的所有数据均来自于系统数据库,所需数据主要有学生评价数据、同行评价数据、教师自评数据和专家评价数据等,这些数据的获取可以直接提取数据库表的内容。另外,还要综合调查问卷的数据。数据准备完成后,需要对全部数据进行预处理,使其满足数据挖掘格式。
2.2.2 数据挖掘阶段
依据数据的具体性质,选择合适的处理技术,常用的技术有聚类分析、归纳技术、关联技术以及神经元网络等技术,常用的算法有BP算法、ID3算法等。然后使用选择的技术和算法对数据进行挖掘。
2.2.3 评估和表示阶段
将教学评价的原始数据,利用数据挖掘技术转换为更加容易理解、关系明确的形式,采用统计学方法评价数据分析的结果,进而获得最佳的模式,同时还要预测可能发生的多种情况,为决策者提供多个方案。
3 数据挖掘技术在高职院校教学评价中的应用
教学评价的任务就是通过科学的手段,构建数据挖掘的模型,并将模型应用到高职院校的教学管理中。教学评价模型要尽量降低人为因素的干扰,重新调整教学评价中的属性权重。决策树算法在商业领域应用范围较广,并且成效明显,但是目前在教学评价中的应用还比较少,我们主要对决策树算法的应用进行分析,构建决策树模型,将其具体应用到高职院校的教学评价中。决策树模型能够在海量的数据中分析出可能影响学生、同行、专家评价结果的重要因素,能够建立教师的教学行为和教学质量之间的关系,进而发现相应的规律,为以后的教学评价服务。
3.1 数据挖掘技术在教学业绩评价中的应用
高职院校对于教学质量的评价一直缺乏科学的评价方法,因此教学评价的结果缺乏合理性,教学评价的效果较差。数据挖掘技术的应用,能够构建科学的、合理的教学质量评价体系,并由专门的部门负责测评,这样教师教学质量的评定就有了准确性,进而可以将教学等级作为评价的硬性指标,教师的晋级就有了理论依据。我们将其具体的应用分析如下:
(1)在成绩方面,多数高职院校是以期末成绩和平时成绩来评价学生,奖励结果多以奖学金的形式出现。采用传统的方式进行评价,只能单方面的靠成绩的数字来评价学生,而应用数据挖掘技术可以挖掘成绩背后的影响因素,实现对比分析和全面分析。从而对学生的学习成绩做出正确的评价,并且在教学环节中采用必要对策。(2)在考试试题的出题中,数据挖掘技术能够剖析学生的特点,从而针对性的出题,帮助学生发现学习中存在的问题。(3)教学评价。这是我们研究的重点,在这一过程中,教学评价源于教师,但是评价对象却是学生。在传统的评价中,我们往往忽视了对学生这一主体的作用,使用数据挖掘技术之后,评价的主体为学生,结合多种因素进行评价,从而根据学生的需求进行教学方法与课程设置的改革。使学生的学习过程循序渐进,更容易进入角色,提高学生学习的自信心。对影响学生的学习因素每个学期都要进行分析,利用管理系统并结合数据挖掘技术,就能更自如地完成教学改革,促进教学质量的提高。
3.2 数据挖掘技术在教学诊断中的应用
教学评价能够使教师明确自身教学目标的合理性,教学方法和教学手段选择是否科学合理,教学内容的重点和难点是否清晰,进而根据实际情况合理调整自身的教学策略,不断改进与完善教学方法。数据挖掘的结果可以使教师有针对性的解决教学中的问题,教学评价不仅仅要为教师的教学状况进行判断,同时对于教学改革的方向也提出了明确的要求,其能够引导教师树立科学的教学观和正确的质量观,使教师可以清楚自身的不足和今后的努力方向,督促教师不断转变教学思想,对教学的过程进行改革,发挥教师自身的主观能动性和创新精神,最终实现有效的教学改革。
3.3 数据挖掘技术在教学管理中的应用
教师教学质量的评价主要由教学主管部门完成,因此教学主管部门要利用数据挖掘技术科学的收集数据,并选择合适的算法进行分析和处理,通过数据库资料分析出提升教学质量的关键因素,然后将这些因素反馈给高职院校管理层。教学管理人员根据数据挖掘分析的结果可以及时制定正确的改进措施,进而发挥教学管理的功能。教学评价结果对其他教师具有良好的借鉴作用,有利于不断提高教学质量。
4 总结
教学评价是高职院校教学管理的重要组成部分,对我国高职院校教学质量的提高具有十分重要的作用。数据挖掘技术是信息化发展的产物,它能够处理海量的数据信息,提取出信息之间的关联,发现相应的规律,以此来服务于教学评价。数据挖掘技术通过不同的算法,可以找出影响教学质量的因素,进而使决策者可以指定正确的决策,提升高职院校的教学质量。因此高职院校在教学评价工作中,要加大数据挖掘技术的应用,使教学评价能够更好的为提升教学质量服务。
参考文献
[1]董琳.数据挖掘技术在高职院教学评价中的应用研究[J].电脑知识与技术,2013,(4).
[2]江敏,徐艳.数据挖掘技术在高校教学管理中的应用[J].电脑知识与技术,2012,(8).
[3]吕慎敏.基于数据挖掘的高校教学管理决策支持系统研究[D].济南:山东师范大学,2012,(6).
[4]高晓佳.数据挖掘在教育信息化中的应用研究[J].电脑知识与技术,2012,(2).
[5]赵林莉,尹绍宏.数据挖掘技术在高校教学质量评价中的应用[J].廊坊师范学院学报:自然科学版,2011,(12).
[6]刘美玲,李熹,李永胜.数据挖掘技术在高校教学与管理中的应用[J].计算机工程与设计,2010,(5).