李 赟,聂 丹,杨 帆,李彦斌,张 峰
(1.华北电力大学 经济与管理学院,北京 102206; 2.国电联合动力技术有限公司,北京 100039)
基于可信性理论的含大规模可再生能源电网脆弱性评价
李 赟1,聂 丹1,杨 帆2,李彦斌1,张 峰1
(1.华北电力大学 经济与管理学院,北京 102206; 2.国电联合动力技术有限公司,北京 100039)
由于大规模消纳可再生能源的电网作为一个复杂系统,其脆弱性问题是不容忽视的。为了以增强其安全稳定性,提高网络的可靠性,基于可信性理论来对大规模消纳可再生能源造成的电网脆弱性影响进行全面、科学地评价研究。首先建立了基于大规模消纳可再生能源的电网脆弱性评价指标体系;然后利用可信性理论和粗糙集—粒子群优化法构建了一个多层次模糊综合评估模型。最后利用该模型对实例进行了分析评估,验证了模型的可行性与可靠性。通过系统、准确、科学地辨识电网中存在的脆弱点,对大规模消纳可再生能源的电网脆弱特性做出评价是一项具有十分重大意义的研究。
可再生能源;脆弱性;粗糙集—粒子群算法;可信性理论
针对化石能源日益枯竭和气候环境持续恶化的问题,全世界各国都十分关注。所以,能源行业乃至世界各国的首要任务便是大力发展安全、经济、高效、清洁的能源。任何事物都具有两面性,可再生能源发电也不例外,一方面它有着低污染、充足性的优点,另一方面也存在能量密度低、出力不稳定等缺点,具有随机性和间歇性[1]。若大规模消纳这些能源,必定会对电网的安全稳定运行带来一定的风险。同时,电网在接纳可再生能源时,由于其间歇性和随机性的运行特点以及不稳定的输出特性与不可控的源动力,使电网在结构和运行上不可避免地会出现某些难以预料的脆弱特性[2,3]。因此,对大规模消纳可再生能源的电网脆弱性进行评价,可以对威胁电网安全运行的脆弱点进行控制或采取相应的预防措施。
由于电网脆弱性是一个新兴的概念,对于这方面的研究还不够完善,目前还没有公认的定义和统一的判定标准[4]。根据已有的研究文献来看,电网脆弱性是指网络在正常运行或不确定因素的作用下,系统无法继续稳定运行的概率[5]。国外学者主要从电网系统的线路故障和状态故障两方面进行研究,提出了多种脆弱性指标的选取标准对电网的脆弱性进行分析研究。Tucho针对现代电力系统的复杂性,将电网系统按电能的生产和应用流程层划分为发电、输电以及配电3个子系统分别进行脆弱性评价[6]。Dwivedi从系统中母线、发电机及传输线路的脆弱性角度出发,提出了电网脆弱性的指标[7]。国内学者对于电网脆弱性研究的分析侧 重点不同,提出了多种评价理论方法,有复杂网络理论、风险理论、暂态稳定分析等等。这些研究为电网脆弱性评价提供了重要的理论基础[8-12]。
通过文献综述可知,国内外对于可再生能源发电间歇性和电网脆弱性的研究已经具有一定的理论基础,但是多数研究还处于探讨阶段,成果也偏重于理论分析,较难应用于实践当中。本文构建大规模消纳可再生能源对电网脆弱性多因素影响体系,采用可信性理论构建了电网的脆弱性评价模型,并结合某西北某电网进行实证分析,来验证模型的准确性。最后给出了相应的建议,对于指导电网的安全运行具有一定的实践意义。
在对大规模可再生能源并网的运行机制和影响详细分析后,得出电网可能出现脆弱性的环节包括发电、输变电、配电、用电和调度5个主要部分,针对这些环节展开具体研究以找到各自的脆弱源,在此基础上构建大规模消纳可再生能源的电网脆弱性指标体系,以全面系统反映可再生能源并网所带来的影响,如表1所示。
可信性理论是基于模糊论公理化而产生的,由于在实际生活中存在着大量的随机事件,它们的结果并不确定。而含大规模可再生能源的电网本身的不确定性同时包含着模糊性和随机性,可信性理论的提出能够综合考虑二者关系[13,14]。
图1 含大规模可再生能源的电网脆弱性评价指标体系Fig.1 Evaluation index system of power grid vulnerability with large scale renewable energy
2.1 可信性理论
本文所用到的关于可信性理论的相关概念如下。
定理1: 设ε是用隶属度函数μ定义的一个模糊变量,则对任意子集B,可信性测度的计算公式为
(1)
称为可信性反演定理。
2.2 权重的确定
本文先采用粗糙集—粒子群优化算法对信息决策表进行属性约简,随后再计算各指标的权重。
粒子群优化算法是一种基于种群智能的、带有随机策略的优化算法,主要应用方式是在掌握了某一种群信息的基础上,在所有值域范围内进行搜索,不断地进行信息优化,已找到整个范围内的最优解。它的优点是易于实现、搜索范围广、收敛速度快,具有广泛的适用范围[15]。
定义1:在迭代计算过程中,种群除了要满足个体最优和全局最优外,还要以粒子群的中心为依据,保证在粒子更新的过程中都是围绕这个中心进行的。计算公式如下:
(2)
β:收敛因子,
(3)
p:随机因子,
(4)
式中:c1、c2为[0,1]之间的随机数;Mbest为整个种群的中心位置,用每个粒子的个体最优来确定,
(5)
式中:m为粒子个数;pbestid为第i个粒子个体最优的第d维。
基于粗糙集为粒子群优化的属性约简算法的流程如下:
第1步,明确粒子群的数量p,设定最大的迭代数量tmax,通过计算信息决策表中中各属性的重要度来对整个粒子群进行初始化;
第2步,根据定义的适应度函数计算所得的结果确定pbest和gbest;
第3步,根据函数公式(2)对粒子进行更新,并得出粒子位置的二进制转换形式;
第4步,将得到的粒子群二进制串与属性集合的判定标准对照,即是否满足结果为一个约简和属性集个数能够全面反映评价内容的两项要求,若粒子x满足标准,则断定该属性集合R已经达到最优约简。若粒子x没有满足标准,则转到第二步继续,直至得出最优解。
基于粗糙集—粒子群优化的属性约简算法流程图如图2所示。
图2 基于粗糙集—粒子群优化的属性约简算法流程图 Fig.2 Attribute reduction algorithm based on rough sets and particle swarm optimization
在进行了粗糙集—粒子群优化的属性约简算法后,本文将利用基于粗糙集条件信息熵的权重确立公式,对已经约简后的决策表进行计算。
(6)
(7)
(8)
在决策表中,条件属性的信息熵可以推导出以下3条定理:
基于粗糙集的条件信息熵的权重确定方法可以把使主客观相结合,避免过分约简,更加具有合理性和高效性。
2.3 算法步骤
可信性理论在电网脆弱性评价的应用不仅可以克服传统模糊方法的主观性问题,还可以使评价结果更加直接明了,便于人们的理解。因此,本文将采用可信性理论对基于大规模消纳可再生能源的电网脆弱性进行评价,保证所得评价结果的科学性、合理性、准确性。
采用可信性理论对基于大规模消纳可再生能源的电网脆弱性评价流程如下:
第1步,根据大规模可再生能源并网建立相应的脆弱性评价指标体系。
第2步,采用基于粗糙集理论—粒子群优化算法获取指标的综合权重。
第3步,将基于大规模消纳可再生能源的电网脆弱状态划分为几个不同的区间,并针对每一指标在不同的区间内设置科学的判定依据。
第4步,通过专家先进的知识和熟练的经验对每一指标所处的电网脆弱性区间进行打分,利用专家调研法得出各指标在每一区间vl(l=1,2,…k)上的隶属度gij。
第6步,将二级指标的权重与可信性测度矩阵相乘进行线性变换,得到其在不同区间上的脆弱性评价向量:
(9)
第7步,将一级指标的权重与可信性测度矩阵相乘进行线性变换,得到电网整体的脆弱性评价向量:
(10)
由向量B可知脆弱源在所有评语上的可信性分布,进而根据可信性最大原则确定基于大规模消纳可再生能源的电网脆弱性状态,并采取相应的措施。
本算例以我国西北某电网为例进行说明。该电网所处地区风资源及建设条件非常适合大型风电场的开发建设,同时,太阳能资源也十分丰富。近年来,该地区凭借自身的地理优势积极推进可再生能源的建设步伐,目前已规划的风电场有8处,装机容量达到1100万kW;光伏电站有2处,装机容量已超过500万kW。截至2015年6月底,该地区实现风电并网容量830万kW,光电并网容量110万kW,年均发电量超过80亿kW时,总装机容量分别占到全省和全国的60%和6%。
据了解,目前该地区正在投资建设关于风光储电网融合项目,规划总装机容量为40万kW,包括20万kW的风电装机容量、15万kW的光伏装机容量以及5万kW的储能装置。基于风光储电网联合可以为以后实现多种可再生能源互补利用开创了新的发展模式,也为后续项目的建设提供了技术、经验参考。
3.1 确定权重
根据公式(8)可计算出每一个指标的权重值,并对所得的结果进行归一化处理,从而可得到各指标最终的权重值,结果见表1。
通过上表可知,由基于条件信息熵的粗糙集理论算法计算而得的各一级指标的权重分别为0.221、0.236、0.151、0.169、0.223,其中权重最大的是输变电环节和调度环节,二级指标中,权重最大的指标设备老旧率,其次是技术支持度,权重最小的指标为控制协调性和自然灾害率。上述各级指标权重与可再生能源发电现状以及某西北电网的脆弱性实际情况相符,随着我国可再生能源的加速发展,基础设备的坚强程度、先进技术的应用规模等一系列因素均会对可再生能源并网项目的脆弱性造成很大影响。
表1 电网脆弱性评价指标权重
基于粗糙集条件信息熵的权重确定方法可以有效避免传统计算方法中可能出现冗余属性权重为0的情况,因此更加精确、合理,大大提高了权重确定方法的普遍适用性和实用性。
3.2 评价结果
根据上文,可信性测度构建为可信性测度矩阵根据上文,可信性测度构建为可信性测度矩阵Ci,通作模糊线性变换,得出一级指标Xi的可信性综合评估向量,计算结果如下:
最后,对可信性综合评估矩阵C再次进行模糊线性变换,得出该电网在评语等级上的可信性综合评估向量,计算结果如下:
通过上述实证分析,评价结果如表2所示。
表2 评价结果
对评价结果具体分析如下:
(1)该电网在评语集上的可信性分布为(0.157,0.273,0.233,0.185, 0.152),根据最大隶属度原则可知,该电网处于稳定状态,但是也在不断趋近与值得关注的状态。因此需要加大对该电网的脆弱性监控和管理,以防患于未然。
(2)通过比较各级指标的权重及可信性测度评估向量可以看出,配电环节、用电环节和调度环节的主要影响因素均处于安全状态,降低了该电网的脆弱性程度。
(3)通过分析比较所得的各一级指标权重值及可信性综合评估向量,我们可以得出该电网的脆弱状态的主要集中于发电环节和输变电环节。
因此在基于大规模消纳可再生能源的电网建设中,重点从以下两方面着手降低电网的脆弱性。一方面,要加强对我国宏观经济形势、政策走向的关注,适应、引领行业的发展,降低外部环境对大规模消纳可再生能源的电网脆弱性影响;另一方面,加大技术投入,突破可再生能源发电并网的关键技术,包括控制技术、输电技术、调度技术和储能技术等各个方面,实现可再生能源并网友好、控制职能、输电可靠、多能互补的目标。同时,加强电网上下游的沟通,减少供给端、需求端的信息不对称。
本文从大规模消纳可再生能源的角度对电网的脆弱性进行分析,首先建立了从发电环节、输变电环节、配电环节、调度环节和用电环节五个维度考虑的风险指标体系,为电网的脆弱性评价提供了良好的基础。其次可信性理论运用到基于大规模消纳可再生能源的电网脆弱性评价中。最后将该模型应用到西北某电网中,对其进行脆弱性评价,取得了良好的效果,进而验证了指标体系与评价模型的有效性与实用性。
未来,坚强智能电网能够为风能、太阳能等各类间歇性、随机性能源的接入和消纳提供一个平台,实现可再生能源的大规模、集约化开发,而本文所提出电网脆弱性评价指标和方法可以很好地应用于该领域,为可再生能源发展规划、电网安全防御体系构建提供决策依据。
[1] 汪海瑛. 含大规模可再生能源的电力系统可靠性问题研究[D].武汉:华中科技大学,2012.
[2] SURINKAEW Tossaporn, NGAMROO Issarachai. Coordinated Robust Control of DFIG Wind Turbine and PSS for Stabilization of Power Oscillations Considering System Uncertainties[J]. IEEE Transactions on Sustainable Energy, 2014, 5(3): 823-833.
[3] NOCK Destenie, KRISHNAN Venkat, MCCALLEY James D. Dispatching intermittent wind resources for ancillary services via wind control and its impact on power system economics[J]. Renewable Energy, 2014, 71(11): 396-400.
[4] ZIO E, SANSAVINI G. Vulnerability of Smart Grids With Variable Generation and Consumption: A System of Systems Perspective [J]. Systems, Man, and Cybernetics, 2013, 43(3): 477 - 487.
[5] KOC Y, WARNIER M, KOOIJ R, et al. Structural Vulnerability Assessment of Electric Power Grids[J]. IEEE Computer Society, 2013, 43(3):386-391.
[6] TUCHO G T, WEESIE P D M, NONHEBEL S. Assessment of renewable energy resourc es potential for large scale and standalone applications in Ethiopia[J]. Renewable & Sustainable Energy Reviews, 2014, 40:422-431.
[7] DWIVEDI A, YU X. A Maximum-Flow-Based Complex Network Approach for Power System Vulnerability Analysis[J]. Industrial Informatics IEEE Transactions on, 2013, 9(1):81-88.
[8] 蔡铭,谢晓玲,王雪畅,等. 智能电网脆弱性分析及对策研究[J].信息工程大学学报,2013,14(3):376-379.
[9] 唐强. 电力系统脆弱性评估方法研究[D]. 武汉:华中科技大学,2012.
[10] 梅丹,王公宝,胡伟文,等. 基于复杂网络理论的电力系统脆弱性研究概述[J]. 电子设计工程,2014,22(6):190-192.
[11] 梁志鹏,彭显刚,梁飞强,等,基于元胞自动机演化的复杂电网脆弱性研究[J].广东电力,2016,29(1):45-50.
[12] 肖盛,张建华,肖河. 基于复杂网络理论与风险理论的地区电网脆弱性评估[J]. 电网与清洁能源,2013,29(6):21-28.
[13] 毛安家,何金. 一种基于可信性理论的电网安全性综合评估方法[J]. 电力系统保护与控制,2011,39(18):80-87.
[14] HE Q F, WANG T Z, ZHU J Y, et al. A Hybrid Intelligent Algorithm for Fuzzy Programming Problem under Credibility Theory[J]. Applied Mechanics and Materials, 2014, 530-531: 363-366.
[15] 郑桂玲,孙亮,戚啸艳,等. 基于粗糙集分类的群决策专家个体可信度权重确定方法[J]. 模糊系统与数学,2015,29(1):153-157.
Vulnerability Evaluation of Power Grid with Large Scale Renewable Energy Sources Based on Credibility Theory
LI Yun1, NIE Dan1, YANG Fan2, LI Yanbin1, ZHANG Feng1
(1.School of Economics and Management, North China Electric Power University, Beijing 102206, China;2.Guo Dian United Power Technology Company, Beijing 100039, China)
Large scale renewable energy grid is a complex system whose vulnerability cannot be ignored. In order to enhance its stability and improve the reliability of the network, this article makes a comprehensive and scientific evaluation research on vulnerability influence of large scale renewable energy grid on the basis of credibility theory. First of all, evaluation index system is established for vulnerability of large scale renewable energy grid. Then a multi-level fuzzy comprehensive evaluation model is built by using credibility theory and rough set—the particle swarm optimization method. Finally, this model is used to evaluate cases and its feasibility and reliability are verified. It is of great significance to make vulnerability evaluation of large scale renewable energy grid on a systematic, accurate and scientific basis.Key words:renewable energy; vulnerability; rough sets and particle swarm optimization algorithm; credibility theory
2016-03-17.
国家自然科学基金重点项目(71471058);中央高校基本科研业务费专项资金资助项目(JB2016169).
10.3969/j.ISSN.1007-2691.2016.06.12
TM711
A
1007-2691(2016)06-0074-06
李赟(1990-),女,博士研究生,研究方向为能源管理;聂丹(1992-),女,博士研究生,研究方向为电力企业管理。