中国室内和室外灰尘中邻苯二甲酸酯的分布和健康风险评价

2016-12-12 03:52秦晓雷章涛孙红文
生态毒理学报 2016年2期
关键词:邻苯二甲酸灰尘均值

秦晓雷,章涛,孙红文,*

1. 南开大学环境科学与工程学院 环境污染过程与基准教育部重点实验室,天津 300350 2. 中山大学环境科学与工程学院 环境污染控制与修复技术广东省重点实验室,广州 510275



中国室内和室外灰尘中邻苯二甲酸酯的分布和健康风险评价

秦晓雷1,章涛2,#,孙红文1,*

1. 南开大学环境科学与工程学院 环境污染过程与基准教育部重点实验室,天津 300350 2. 中山大学环境科学与工程学院 环境污染控制与修复技术广东省重点实验室,广州 510275

邻苯二甲酸酯(PAEs)是一类内分泌干扰物,作为塑料添加剂被大量生产和使用,其环境污染和风险评价已成为当今关注的焦点。对中国各地区88个室内灰尘样品和86个室外灰尘样品进行了调查,发现邻苯二甲酸酯在两类灰尘中广泛存在,10种邻苯二甲酸酯的总浓度分别为9.60~4 130 μg·g-1dw和0.102~1 430 μg·g-1dw,且室内灰尘中邻苯二甲酸酯含量高于室外灰尘。研究还表明,不同地区的邻苯二甲酸酯含量差异很大,但邻苯二甲酸(2-乙基己基)酯(DEHP)、邻苯二甲酸二丁酯(DnBP)和邻苯二甲酸二异丁酯(DiBP)在各地区都是主要组分,三者总量占总PAEs的95%以上。估算了成人和儿童每天通过灰尘摄入DEHP、DnBP、邻苯二甲酸二乙酯(DEP)的总量分别为5.32×10-2~1.81、2.21×10-2~0.595、1.90×10-4~5.62×10-3μg·kg-1bw·d-1和1.20~8.32、0.704~3.47、4.48×10-3~2.43×10-2μg·kg-1bw·d-1;灰尘中DEHP对成人和儿童的致癌风险(R)分别为7.45×10-7~2.53×10-6和1.68×10-5~1.16×10-4。上述研究结果为进一步评价该类物质健康风险提供科学依据和基础资料。

邻苯二甲酸酯;室内灰尘;室外灰尘;分布;健康风险评价

Received 30 November 2015 accepted 27 January 2016

邻苯二甲酸酯(phthalate esters)是一种广泛应用的有机合成化学品,主要用作塑料增塑剂,还广泛应用于印染、涂料及个人护理品等的生产[1-3]。其中,应用最为广泛的是邻苯二甲酸(2-乙基己基)酯(DEHP),其他重要的还有邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二丁酯(DnBP)、邻苯二甲酸二异丁酯(DiBP)、邻苯二甲酸二辛酯(DnOP)、邻苯二甲酸二己酯(DnHP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二环己酯(DCHP)以及邻苯二甲酸二壬酯(DnNP)等。PAEs作为增塑剂是以范德华力或氢键与塑料分子结合,因此在使用过程中,遇水或有机溶剂时极易被释放出来,对环境造成污染[4]。近年来,在各种环境介质甚至人体中都发现了PAEs的存在,其已成为地球上最广泛的污染之一[5]。

PAEs具有雌激素作用,能够干扰人体正常的内分泌系统,从而影响生殖[6-9];也有研究发现该类化合物有致癌、致畸、致突变[10]和致哮喘[11]的作用。

本研究对中国各地区的室内和室外灰尘中10种邻苯二甲酸酯(DEHP、DMP、DEP、DnBP、DiBP、DnOP、DnHP、BBP、DCHP和DnNP)的含量和分布进行了调查,并对其人体暴露进行了初步评价,从而为进一步研究该类物质的健康风险提供科学依据和基础资料。

1 材料与方法 (Materials and methods)

1.1 样品采集

所有样品采集于2013年1~4月,包括全国各个地区(表1)。室内灰尘样品包括家庭(n=59)和工作场所(包括商场和学校,n=29)两类。

表1 采样点在我国6个行政区分布[12]

表2 仪器分析参数

室外灰尘是离地面1 m以上的窗台或建筑表面的落尘。所有样品用毛刷和锡箔纸采集,然后风干,过金属网筛,再转移到高锰酸钾-硫酸洗液清洗过的玻璃离心管中,在-20 ℃保存待用。

1.2 样品分析

分析纯的标准品及d4标记的内标购自AccuStandard (New Haven,CT,USA),纯度> 99%。分析纯的正己烷和丙酮购自J T Baker (Phillipsburg,NJ,USA)。

取0.05~0.1 g室内或室外灰尘样品于15 mL玻璃离心管中,加入250 ng内标,室温下振荡平衡3 h。然后用正己烷:丙酮(4:1 V/V)萃取,每次加入正己烷:丙酮(4:1 V/V)4 mL,振荡30 min。然后在4 000 r·min-1离心5 min,移出上清液。这一过程重复3次,合并上清液,氮吹浓缩至1 mL,待测。

采用岛津GC/MS-QP 2010 Plus系统,仪器条件见表2。m/z 163、279、149分别用来定量DMP、DnOP和其他8种物质。方法回收率76%~130%,10种物质定量限(LOQ)均为0.01 μg·g-1。

1.3 室内灰尘中PAEs的暴露评价

根据美国环保局(USEPA)提供的模型略微改进(1)[13],估算成人和儿童每天通过3种不同途径(经口、皮肤、呼吸)从灰尘摄入的PAEs量(ADD):

(1)

其中,ADDingest、ADDdermal、ADDinhale分别表示经口、皮肤、呼吸途径摄入灰尘中PAEs量,μg·kg-1bw·d-1;IngR为灰尘摄食率,mg·d-1,对于成人和学前儿童分别为110和200 mg·d-1;F表示每天在各场所时间比例,对成人,在室内与室外比例为100%和0%,对儿童,在室内和室外比例分别为83%和17%;SA表示皮肤接触面积,cm2,对成人为3 300 cm2,对儿童为2 800 cm2;AFdust表示皮肤吸附因子,0.2 mg·cm-2;ABS表示皮肤吸附比,对DEHP、DnBP和DEP,其值分别为2.3%、0.45%和0.74%;BW为体重,kg,成人和儿童分别为61.5和15 kg;IRinhalation为呼吸速率,m3·d-1,成人和儿童分别为20和10 m3·d-1;PEF为颗粒物消除因子,1.36×106m3·g-1。

灰尘中PAEs的致癌风险(R)估算如模型(2)[14]:

R=q×ADD

(2)

表3 室内和室外灰尘中PAEs的浓度

其中,q表示剂量-反应关系确定的致癌斜率因子,(mg·kg-1bw·d-1)-1,对于DEHP,其值为0.014 (mg·kg-1bw·d-1)-1[15];ADD表示每天通过灰尘摄入PAEs量,mg·kg-1bw·d-1。

2 结果(Results)

2.1 室内和室外灰尘中PAEs分布

室内灰尘中的PAEs浓度水平见表3。10种PAEs中DEHP、DiBP、DnBP、DMP和DEP可100%检出,DnHP和DCHP检出率较低,分别为75%和69%。10种PAEs的总浓度范围9.60~4130 μg·g-1dw,均值为599 μg·g-1dw。DEHP含量最高,均值为470 μg·g-1dw;DiBP含量次之,均值为62.1 μg·g-1dw。

图1 室内和室外灰尘中PAEs分布Fig. 1 Distribution of phthalate esters in indoor and outdoor dust samples

图2 不同场所室内灰尘PAEs分布比较Fig. 2 Comparison of phthalate esters in indoor dust in different types of places

室外灰尘中总PAEs浓度范围0.102~1 430 μg·g-1dw,均值浓度为216 μg·g-1dw(表3),其中DnBP和DEHP检出率最高(100%),DnHP检出率最低(55%)。DEHP在室外灰尘的均值最高,为159 μg·g-1dw,DnBP次之,为25.2 μg·g-1dw。

本文还比较了来自不同场所的室内灰尘中邻苯二甲酸酯的水平(图2),家庭室内灰尘中邻苯二甲酸酯含量变化范围相对较窄,平均值低于工作场所。这可能与某些工作场所较多使用塑料、纸张等含有邻苯二甲酸酯的相关产品有关。

2.2 灰尘中PAEs的人体暴露评价

表4列出了成人和儿童对于3种重要PAEs的每日平均摄入量(ADD)。成人每天通过灰尘摄入DEHP、DnBP和DEP的总量分别为5.32×10-2~1.81、2.21×10-2~0.595、1.90×10-4~5.62×10-3μg·kg-1bw·d-1。儿童每天通过灰尘摄入DEHP、DnBP和DEP的总量分别为1.20~8.32、0.704~3.47、4.48×10-3~2.43×10-2μg·kg-1bw·d-1。进一步估算灰尘中DEHP对成人和儿童的致癌风险(R)分别为7.45×10-7~2.53×10-6和1.68×10-5~1.16×10-4。可见这3种物质对儿童的暴露风险要高于成人。

3 讨论(Discussion)

邻苯二甲酸酯在中国室内和室外灰尘中广泛存在,室内灰尘中10种所监测PAEs的总浓度均值为599 μg·g-1dw。DEHP、DiBP和DnBP是主要的邻苯二甲酸酯类化合物,其中DEHP是优先污染物,其最高浓度可达4 012 μg·g-1dw,均值为470 μg·g-1dw,略低于中国其他报道[16-18];与其他国家相比,低于挪威(640 μg·g-1dw)[19]和丹麦(858 μg·g-1dw)[20],但高于美国(187 μg·g-1dw)[16]和德国(416 μg·g-1dw)[21]。DnBP含量远远低于DEHP,其最高浓度仅为266 μg·g-1dw,均值为53.3 μg·g-1dw,低于瑞典(150 μg·g-1dw)[22]、德国(87 μg·g-1dw)[21]和意大利(799 μg·g-1dw)[23],但高于美国(10.3 μg·g-1dw)[24]和日本(16.6 μg·g-1dw)[25]。因此可以判断,中国PAEs污染在世界上处于中等水平。

室外灰尘中PAEs浓度远低于室内灰尘,其均值是室内灰尘的1/3,说明DEHP主要来自于室内,这与其用途有关,PAEs主要用于与人民生活或工作中息息相关的产品中。在室外灰尘中DEHP仍为优先污染物,其均值为159 μg·g-1dw,DnBP的均值25.2 μg·g-1dw,两者的差异较室内低,再次说明室内空气是污染的来源,某些室内场所具有异常高值的污染水平,造成室内灰尘DEHP的平均浓度异常高。本文调查的全国(159 μg·g-1dw)或中南地区(105 μg·g-1dw)室外灰尘中DEHP含量低于中南地区的广州(205 μg·g-1dw)[26],但是高于香港(92.4 μg·g-1dw)[26]。而本研究中室外灰尘中DnBP含量在全国(25.2 μg·g-1dw)或中南地区(13.6 μg·g-1dw)的平均水平都高于广州(12.5 μg·g-1dw)[26]和香港(1.28 μg·g-1dw)[26]。比较PAEs在我国6个行政区的水平,发现具有很大差异,只是经济社会水平不能完全解释这种差异,还与温度等自然条件有关。如,在东北地区温度低,有机污染物向颗粒物分配的倾向性增高,这可以部分解释东北地区PAEs在灰尘中有较高的水平,特别是室内灰尘与室外灰尘差别较小,而其他地区的室内外灰尘中PAEs的水平则具有较大差异[27]。

人体暴露的初步评价表明,由于生活与活动习惯不同,儿童对于PAEs的摄入量和致癌风险要高于成人。本文的估算印证了文献中发现在儿童尿液中PAEs代谢产物的水平明显高于成人[28-29]。但无论成人还是儿童,DEHP和DnBP的摄入量都未超过USEPA的参考值(DEHP:20 μg·kg-1bw·d-1;DnBP:100 μg·kg-1bw·d-1)[10]。对3种途径各自贡献,这两类人群,经口摄入都是最主要的暴露途径,其次是经皮肤,通过呼吸的贡献率远小于其他两种途径。值得注意的是,对成人及儿童,灰尘中DEHP的都有一定的致癌风险,特别是儿童,其致癌风险最低值为USEPA所规定参考值(1.0×10-6)[15]的16.8倍。因此,这清楚地表明了灰尘中PAEs污染已经对国人构成较大威胁。

表4 DEHP、DnBP和DEP每日平均摄入量(ADD)估算值

[1] Latini G. Monitoring phthalate exposure in humans [J]. Clinica Chimica Acta, 2005, 361(1-2): 20-29

[2] Hauser R, Calafat A M. Phthalates and human health [J]. Journal of Occupational and Environmental Medicine, 2005, 62(11): 806 -816

[3] Schettler T. Human exposure to phthalates via consumer products [J]. International Journal of Andrology, 2006, 29(1): 134-139

[4] Cao X L. Phthalate esters in foods: Sources, occurrence, and analytical methods[J]. Comprehensive Reviews in Food Science and Food Safety, 2010, 9(1): 21-43

[5] Gomez-Hens A, Aguilar-Cabbalas M P. Social and economic interest in the control of phathalic acid esters [J]. Trends in Analytical Chemistry, 2003, 22(3): 847-857

[6] Latini G, Verrotti A, De-Felice C. Di-2-ethylhexyl phthalate and endocrine disruption: A review [J]. Current Drug Targets-Immune, 2004, 4(1): 37-40

[7] Fisher J S. Environmental anti-androgens and male reproductive health: Focus on phthalates and testicular dysgenesis syndrome [J]. Reproduction, 2004, 127(3): 305-315

[8] Ema M, Miyawaki E, Kawashima K. Critical period for adverse effects on development of reproductive system in male offspring of rats given di-n-butyl phthalate during late pregnancy [J]. Toxicology Letters, 2000, 111(3): 271-278

[9] Matsumoto M, Hirata-Koizumi M, Ema M. Potential adverse effects of phthalic acid esters on human health: A review of recent studies on reproduction [J]. Regulatory Toxicology and Pharmacology, 2008, 50(1): 37-49

[10] 徐新云. DOP对小鼠精子形态的影响[J]. 工业卫生与职业病, 1994, 20(6): 349-358

Xu X Y. Influence of dioctyl phthalate on mouse sperm morphology [J]. Industrial Health and Occupational Diseases, 1994, 20(6): 349-358 (in Chinese)

[11] Scott A. Industry slams its own study after it links asthma to phthalates [J]. Chemical Week, 2004, 106(28): 13

[12] 行政区划网站[OL]. http://www.xzqh.org/quhua/

[13] USEPA. Supplemental guidance for developing soil screening levels for superfund sites[R]. Washington DC: US Environmental Protection Agency, 2001

[14] USEPA. Exposure and human health reassessment of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Part 1: Estimating exposure to dioxin-like compounds [R]. Washington DC: National Center for Environmental Assessment, Office of Research and Development, 2000

[15] Pei X Q, Song M, Guo M, et al. Concentration and risk assessment of phthalates present in indoor air from newly decorated apartments [J]. Atmospheric Environment, 2013, 68(1): 17-23

[16] Guo Y, Kannan K. Comparative assessment of human exposure to phthalate esters from house dust in China and the United States [J]. Environmental Science and Technology, 2011, 45(8): 3788-3794

[17] Kang Y, Man Y B, Cheung K C, et al. Risk assessment of human exposure to bioaccessible phthalate esters via indoor dust around the Pearl River Delta [J]. Environmental Science and Technology, 2012, 46(15): 8422-8430

[18] Lan Q, Cui K Y, Zeng F, et al. Characteristics and assessment of phthalate esters in urban dusts in Guangzhou city, China [J]. Environmental Monitoring and Assessment, 2012, 184(8): 4921-4929

[19] Oie L, Hersoug L G, Madsen J O. Residential exposure to plasticizers and its possible role in the pathogenesis of asthma [J]. Environmental Health Perspectives, 1997, 105(9): 972-978

[20] Clausen P A, Lindeberg-Bille R L, Nilsson T, et al. Simultaneous extraction of di(2-ethylhexyl) phthalate and nonionic surfactants from house dust concentrations in floor dust from 15 Danish schools [J]. Journal of Chromatography A, 2003, 986(3): 179-190

[21] Butte W, Hoffmann W, Hostrup O, et al. Endocrine disrupting chemicals in house dust: Results of a representative monitoring [J]. Ge-fahrstoffe Reinhaltung Der Luft, 2001, 61(1): 19-23

[22] Bornehag C G, Lundgren B, Weschler C J, et al. Phthalates in indoor dust and their association with building characteristics [J]. Environmental Health Perspectives, 2005, 113(10): 1399-1404

[23] Orecchio S, Indelicato R, Barreca S. The distribution of phthalate esters in indoor dust of Palermo (Italy)[J]. Environmental Geochemistry and Health, 2013, 359(5): 613-624

[24] Philippat C, Bennett D, Krakowiak P, et al. Phthalate concentrations in house dust in relation to autism spectrum disorder and developmental delay in the Childhood Autism Risks from Genetics and the Environment (CHARGE) Study [J]. Environmental Health, 2015, 14(1): 1-10

[25] Bamai Y A, Araki A, Kawai T, et al. Associations of phthalate concentrations in floor dust and multi-surface dust with the interior materials in Japanese dwellings [J]. Science of the Total Environment, 2014, 468-469: 147-157

[26] Wang W, Wu F Y, Huang M J, et al. Size fraction effect on phthalate esters accumulation, bioaccessibility and in vitro cytotoxicity of indoor/outdoor dust, and risk assessment of human exposure [J]. Journal of Hazard Materials, 2013, 261(1): 753-762

[27] 戴树桂. 环境化学[M]. 北京: 高等教育出版社, 2006: 129-141

[28] Guo Y, Wu Q, Kannan K. Phthalate metabolites in urine from China, and implications for human exposures [J]. Environment International, 2011, 37(5): 893- 898

[29] Saravanabhavan G, Guay M, Langlois E, et al. Biomonitoring of phthalate metabolites in the Canadian population through the Canadian Health Measures Survey (2007-2009) [J]. International Journal of Hygiene and Environmental Health, 2013, 216(6): 652-661

Occurrence of Phthalate Esters in Indoor and Outdoor Dust in China: Distribution and Risk Assessment

Qin Xiaolei1, Zhang Tao2,#, Sun Hongwen1,*

1. Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Sciences and Engineering, Nankai University, Tianjin 300071, China 2. Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology,School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China

Phthalate esters (PAEs) are known as endocrine disruptors and have been widely produced and used, and hence the environment pollution and risk assessment of PAEs has become a hot topic currently. In this study, a total of 88 indoor dust and 86 outdoor dust samples were investigated in China. PAEs were widely found in the two types of dust samples, and total concentrations of the 10 PAEs were 9.60~4 130 μg·g-1dw and 0.102~1 430 μg·g-1dw, respectively. The levels of PAEs in indoor dust were higher than those in outdoor dust. The concentrations of PAEs varied greatly in different areas; however, bis(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DnBP) and di-iso-butyl phthalate (DiBP) were always the main analogues in various areas, and the sum of the three accounts for over 95% of the total PAEs. Average daily dose (ADD) was estimated via indoor and outdoor dust; and the ADDs of DEHP, DnBP, diethyl phthalate (DEP) for adults and children were 5.32×10-2~1.81, 2.21×10-2~0.595, 1.90×10-4~5.62×10-3μg·kg-1bw·d-1and 1.20~8.32, 0.704~3.47, 4.48×10-3~2.43×10-2μg·kg-1bw·d-1, respectively. The calculated cancer risks (R) caused by dust DEHP exposure for adults and children were 7.45×10-7~2.53×10-6and 1.68×10-5~1.16×10-4, respectively. These results have provided basic data for further evaluation on health risk of PAEs.

phthalate esters; indoor dust; outdoor dust; distribution; risk assessment

10.7524/AJE.1673-5897.20151130004

国家自然科学基金(No. 21207071,No. 41225014)

秦晓雷(1987-),男,博士研究生,研究方向为新型污染物与健康,E-mail: leiix@163.com;

*通讯作者(Corresponding author), E-mail: sunhongwen@nankai.edu.cn;

2015-11-30 录用日期:2016-01-27

1673-5897(2016)2-231-07

X171.5

A

简介:章涛(1982-),男,环境科学博士,副教授,主要研究方向新型污染物与健康。

孙红文(1967-),女,环境化学博士,教授,主要研究方向环境化学,发表学术论文130余篇。

秦晓雷, 章涛, 孙红文. 中国室内和室外灰尘中邻苯二甲酸酯的分布和健康风险评价[J]. 生态毒理学报,2016, 11(2): 231-237

Qin X L, Zhang T, Sun H W. Occurrence of phthalate esters in indoor and outdoor dust in China: Distribution and risk assessment [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 231-237 (in Chinese)

#共同通讯作者(Co-corresponding author), E-mail: bkzhangtao010@163.com

猜你喜欢
邻苯二甲酸灰尘均值
你真的认识灰尘吗?
灰尘快到桶里来
QuEChERS-气相色谱-质谱法测定植物油中16种邻苯二甲酸酯
灰尘在繁衍
青菜对邻苯二甲酸酯类物质的积累和代谢初探
均值与方差在生活中的应用
关于均值有界变差函数的重要不等式
对偶均值积分的Marcus-Lopes不等式
邻苯二甲酸二丁酯的收缩血管作用及其机制