吕淑佳[1]
一类非线性波动方程组解的爆破和生命跨度
吕淑佳[1]
(中北大学 理学院,山西 太原 030051)
对于一类非线性波动方程组,其中:为波动算子;是在具有紧支集的光滑非负函数;,给出了在不同值情况下,解的爆破和生命跨度.
爆破;生命跨度;柯西问题
对于非线性波动方程组在四维空间的柯西问题
本文主要研究非线性波动方程组
在二维空间下的柯西问题.
通过齐次化原理,在二维非齐次波动方程中,柯西问题(4)的解可以表示为
方程(6)可转化为
同理有
化简式(11),得
的解,得到
综上所述,可得
[1] Li T T,Zhou Y.A note on the life-span of classical solutions to nonlinear wave equations in four space dimensions[J].Indiana University Mathematics Journal,1995,44(4):1207-1248
[2] Lindblad H,Sogge C D.Long-time existence for small amplitude semilinear wave equations[J].American Journal of Mathematics,1996,118(5):1047-1135
[3] Zhou Y,Han W.Life-span of solutions to critical semilinear wave equations[J].Communications in Partial Differential Equations, 2014,39(3):439-451
[4] Takamura H,Wakasa K.The sharp upper bound of the lifespan of solutions to critical semilinear wave equations in high dimensions[J].Journal of Differential Equations,2011,251(4):1157-1171
[5] John F.Blow-up of solutions of nonlinear wave equations in three space dimensions[J].Manuscripta Mathematica,1979,28(1-3): 235-268
[6] John F.Blow-up for quasilinear wave equations in three space dimensions[J].Communications on Pure and Applied Mathematics, 1981,34(1):29-51
[7] Fritz John.Nonlinear wave equations,formation of singularities[M].New York:American Mathematical Soc,1990
[8] John F,Klainerman S.Almost global existence to nonlinear wave equations in three space dimensions[J].Communications on pure and applied mathematics,1984,37(4):443-455
[9] Zhou Y,Han W.Sharpness on the lower bound of the lifespan of solutions to nonlinear wave equations[J].Chinese Annals of Mathematics,Series B,2011,32(4):521-526
Blow up and the lifespan of solutions to some nonlinear wave equations
Lü Shu-jia
(School of Science,North University of China,Taiyuan 030051,China)
For a kind of nonlinear wave equations,whereis the wave operator,is a smooth non-negative function onwith compact support,andis a small parameter,gave that blow up and the lifespan of solutions with different.
blow up;lifespan;Cauchy problem
1007-9831(2016)02-0019-03
O175.27
A
10.3969/j.issn.1007-9831.2016.02.006
2015-10-10
吕淑佳(1989-),女,山西吕梁人,在读硕士研究生,从事双曲型方程组解的适定性研究.E-mail:xiaodoudou422@126.com