Preparation and characterization of hexagonal SrMnO3 nanofibers by electrospinning

2016-10-10 01:32:15ZhuHuaZhongXin
合成纤维工业 2016年4期
关键词:纤维结构吡咯烷酮纺丝

Zhu Hua, Zhong Xin

(School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou 635000)



Preparation and characterization of hexagonal SrMnO3nanofibers by electrospinning

Zhu Hua, Zhong Xin

(School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou 635000)

SrMnO3/polyvinylpyrrolidone(PVP)compositenanofibershavebeenpreparedsuccessfullybyelectrospinningprocessfromstrontium(Ⅱ)nitrateandmanganese(Ⅱ)acetatetetrahydrate.ThehexagonalSrMnO3nanofiberswasobtainedaftercalcinationat800 ℃for3h.TheeffectofPVPconcentrationonthefiberstructurewasinvestigated.Thestructureandpropertiesofnanofiberswerecharacterized.TheresultsshowedthatSrMnO3/PVPcompositenanofibersbecameuniformandthebeadedstructuredisappearedwhenthemassfractionofPVPreached8%;PVPcompletelydecomposedandallthefeedstockstransformedintoSrMnO3duringthecalcinationat700 ℃,thusagoodpurityhexagonalSrMnO3fiberof150-200nminthediameterwereobtained.

strontiummanganate;polyvinylpyrrolidone;electrospinning;calcination;nanofibers

Electrospinningtechniquehasbeenactivelyexploitedasasimpleandversatilemethodforgeneratingcontinuousnanofiberswhichhashighporousstructure,lowdensityandhighspecificsurfacearea[1-3].DuetothespecialskeletalstructurewhichwasconsistedofathreedimensionalnetworkofMnO6octahedra,strontiummanganate(SrMnO3)hassomepropertiessuchaselectronicproperties,thermochromism,thermalconductivity,magneticproperty,etc[4].Recently,themixtureofinorganicandorganicsaltsdissolvinginpolyvinylpyrrolidone(PVP)asstartingmaterials,inorganic-polymericfibershavepreparedbyelectrospinning.Theinorganic-polymericfiberswouldtransformintonanofibersbysubsequentcalcinationsathightemperature.Asfarasweknow,thepreparationofSrMnO3nanofibershasneverbeenreported.HerewereportthepreparedofSrMnO3nanofibersviaelectrospinningcombinedwithsol-gelprocess,andthepropertieswerecharacterizedforitsfutureapplications.

1 Experimental

Strontium(Ⅱ)nitrateandmanganese(Ⅱ)acetatetetrahydratewereusedastherawmaterialsforthepreparationofSrMnO3nanofibers.PVPwiththerelativemolecularmassof1.3×106wasusedasaviscosity-controllingagent.Asolutionwaspreparedbydissolving4mmolstrontium(Ⅱ)nitrateand4mmolmanganese(Ⅱ)acetatetetrahydratein3mLdemonizedwater,whichwasaddedwithacertainamountofPVPdissolvingin11mLethanolaqueous,stirringfor12hatroomtemperature.Thenthehomogeneoushybridsolwasobtained.Theaboveprecursorsolwasloadedina20mLplasticsyringeof25gaugeswithstainlesssteelneedle.Thedistancebetweenthespinneretandcollectorwasfixedas10cmandthehigh-voltagesupplywasmaintainedat15kV.Thespinningratewascontrolledat1.5mL/h.SrMnO3/PVPcompositenanofiberswascollectedonthecollector.Thesefiberswerecalcinatedatarateof2 ℃/minandremainedinairatmospherefor3hat800 ℃.ThushexagonalSrMnO3nanofiberswereobtained.

TheX-raydiffraction(XRD)patternsweremeasuredonaRigakuGeigerfluxinstrument.ThesizeandmorphologyofSrMnO3fiberswereobservedwithJEOLJSM-6390scanningelectronmicroscope(SEM).EnergydispersiveX-ray(EDX)spectrographwasrecordedonINCA200EDSattachedwithSEMtostudythephasepurityofSrMnO3nanofibersthroughtheelementalanalysis.Thermogravimetric(TG)analysiswascarriedoutonaTAQ50thermogravimetricanalyzerinnitrogenatmosphere,andthetemperature-risingratewas10 ℃/min.Fouriertransformationinfrared(FTIR)spectroscopywasrecordedonaPerkinElmerspectrum100.

2 Results and discussion

2.1SEMandEDXanalysis

Fig.1showsthattheconcentrationofPVPhasasignificanteffectontheformation,uniformityandhomogeneityofnanofibers.Thesizeandmorphologyhasmarkeddifferenceunderdifferentconcentrations.Non-uniformfiberswithbeadedstructureareformedwhenthemassfractionofPVPwasbelow6%.WiththeincreaseofPVPconcentration,thesurfacetensionandviscosityarecorrespondinglyincreased,theresistanceairflowtensileforceandstaticelectricityarealsoincreasedintheelectrospinningprocess,andthestructureoftheobtainedfibersbecomeuniform.ThebeadedstructuredisappearsandthefibersbecomeuniformatthePVPmassfractionof8%.Therandomlyorientedhybridfiberswithsmoothsurfaceandaveragediameterof300-400nmcanbeobservedasthemassfractionofPVPwas10%.TheobtainedfiberismoreuniformthanthatoflowPVPconcentration.Theresultsarewellconsistentwiththepublishedliterature[5].

AsFig.2ashown,thefibrousstructureisretainedonthewholeexceptthatasmallamountoffibersarebrokenafterannealingat800 ℃.Andtheaveragediameterisreducedto150-200nmduetotheevaporationanddecompositionofPVPandvolatilecomponents.ThefiberssurfacebecomesroughbecauseofthedecompositionofPVPandtheformationofcrystallites.SrMnO3nucleialsogrowtoformlargernanoparticles.AsFig.2bshown,allpeaksarecorrespondingtoSr,MnandO,exceptAupeak(Auissprayedontothenanofibersbeforescanninginordertogethighqualitymorphologyimages).TheresultshowsthattheSrMnO3nanofibersholdgoodpurityafterremovalofPVP.

Fig.2 SEM images and EDX pattern of SrMnO3 nanofibers

2.2XRDanalysis

AsindicatedinFig.3,strongpeaksareobservedat2θof32.84°associatedwith(110)planes.Othermaindiffractionpeaksat2θof27.22°, 35.19°, 43.19°, 48.90°, 58.62°, 60.17°and68.87°areassignedtothediffractionof(102), (103), (202), (203), (300), (213)and(220)crystalfacets,respectively.AlldiffractionpeaksshowgoodconsistencywithJCPDSCardNo.24—1213ofperovskitephaseofSrMnO3[6].Asinglehexagonalperovskitesystemwasdetermined.NotypicalpeakofpolymerisobservedinFig.3,indicatingthatPVPwasdecomposedandremovedafterannealingat800 ℃.

Fig.3 XRD patterns of SrMnO3 nanofibers

2.3Thermogravimetricanalysis

AsshowninFig.4,theweightlossprocesshas3stages.Theweightlossis11.4 %atthefirststagebelow120 ℃,whichwascausedbythelossofsurfaceadsorbatesandresidualmoisture[7];theweightlossof35.5%over250-400 ℃isduetothedecompositionoforganiccontents(PVP)[5];similarly,theweightlossof33.7%over400-700 ℃isduetothedecompositionoftheorganometallicprecursor(manganeseacetate)andstrontiumnitrate;theweightlossiscompletedbelow700 ℃andthetotalweightlossisabout80.4%;noweightlossisobservedabove700 ℃andtheTGcurvebecomeshorizontal.TheTGcurveindicatesthatSrMnO3fibersamplescanbefabricatedatatemperatureof700 ℃andabove.

Fig.4 TG curve of SrMnO3/PVP composite nanofiber

2.4FTIRspectrometry

AsFig.5shown,forPVP,thebroadbandaround3 200-3 600cm-1correspondstoO—Hstretchingvibration;thetripletpeakspresentat2 954cm-1correspondingtotheasymmetricandsymmetricC—Hstretchingvibrationsofmethylgroups(fromacetate)[8];andtheotherthreedominantpeaksatabout1 654, 1 442and1 292cm-1correspondtothestretchingvibrationofCO,C—HandC—Nbonds,respectively[9].ForSrMnO3/PVPcompositenanofiber,theCOstretchingvibrationcharacteristicpeakred-shiftsto1 652cm-1,theC—Hstretchingvibrationpeaksblue-shiftsto2 956and1 444cm-1,respectively;andthestretchingofC—Nat1 292cm-1isweakened.ForSrMnO3nanofiber,allthePVPpeaksvanish,indicatingthatthePVPwasfulldecomposed,threenewpeaksappearat765, 663, 542cm-1,whichareascribedtothestretchingvibrationofmetal-oxide(M—O)bondsinSrMnO3,matchingwellwiththepublishedliterature[6].TheFTIRresultsareingoodagreementwiththeSEM,XRDandTGresults.

Fig.5 FTIR spectra of PVP and SrMnO3/PVP composite nanofiber and SrMnO3 nanofiber1—PVP;2—SrMnO3/PVP composite nanofiber;3—SrMnO3 nanofiber

3 Conclusions

a.SrMnO3/PVPcompositenanofiberswithadiameterof300-400nmweresuccessfullyfabricatedbyelectrospinningtechniqueandpurehexagonalSrMnO3fiberswithadiameterof150-200nmwerepreparedbytheheattreatmentofSrMnO3/PVPcompositenanofibersat800 ℃ .

b.PVPconcentrationplaysanimportantroleintheformation,uniformityandhomogeneityofnanofibers.ThefiberbecameuniformwhenthePVPmassfractionreached8%.

c.PVPwasdecomposedandremovedfromSrMnO3/PVPcompositefiberaftertheheattreatmentat700 ℃ .

References

[1]WangJinxian,ZhengXiaoqiu,DongXiangting,etal.SynthesisofLaMnO3nanofibersviaelectrospinning[J].ApplPhysRes, 2009, 1(2): 30-36.

[2]BhardwajN,KunduSC.Electrospinning:Afascinatingfiberfabricationtechnique[J].BiotechnolAdv,2010,28(3):325-347.

[3]LiDan,XiaYounan.Directfabricationofcompositeandceramichollownanofibersbyelectrospinning[J].NanoLett, 2004, 4(5):933-938.

[4]HeirasJ,PichardoE,MahmoodA,etal.Thermochromismin(Ba,Sr)-Mnoxides[J].JPhysChemSolid, 2002, 63(4):591-595.

[5]ChandradassJ,KimH,MomadeFWY.SynthesisofultrafineMgFe2O4,nanofibersviaelectrospiningusingsol-gelprecursor[J].JSol-GelSciTechnol, 2013, 65(2):189-194.

[6]KhazaeiM,MalekzadehA,AminiF,etal.Effectofcitricacidconcentrationasemulsifieronperovskitephaseformationofnano-sizedSrMnO3andSrCoO3samples[J].CrystResTechnol, 2010, 45(10):1064-1068.

[7]ImranZ,BatoolSS,IsrarMQ,etal.Fabricationofcadmiumtitanatenanofibersviaelectrospinningtechnique[J].CeramInt, 2012, 38(4):3361-3365.

[8]TianHuyong,LuoWeigen,PuXinghua,etal.SynthesisandanalysesofthermaldecompositionandmicrostructureofSr-dopedbariumtitanatealkoxidederivedprecipitatesandthinfilms[J].ThermochimActa, 2000, 360(1):57-62.

[9]CuiQizheng,DongXiangting,WangJinxian,etal.Directfabricationofceriumoxidehollownanofibersbyelectrospinning[J].JRareEarth, 2008, 26(5):664-669.

静电纺丝技术合成SrMnO3纳米纤维及结构表征朱华,钟欣(四川文理学院化学化工学院,四川 达州 635000)摘要:以四水乙酸锰和硝酸锶为原料,通过静电纺丝法制备了锰酸锶(SrMnO3)/聚乙烯吡咯烷酮(PVP)复合纳米纤维,在800 ℃下处理3h,得到六方晶形结构的SrMnO3纳米纤维,考察了PVP浓度对纤维结构的影响,并对纤维的结构与性能进行了表征。结果表明:PVP质量分数为8%时,SrMnO3/PVP复合纤维表面光滑,均匀性好;热处理温度达700 ℃时,SrMnO3/PVP复合纤维中PVP完全分解,原料全部转化为SrMnO3,所得SrMnO3纳米纤维直径为150~200nm的六方晶形结构,且具有良好的纯度。关键词:锰酸锶聚乙烯吡咯烷酮静电纺丝法烧结纳米纤维

date:10- 06- 2016;reviseddate: 25- 06- 2016.

AppliedBasicResearchProgramsofScienceandTechnologyDepartmentofSichuan(2015JY0254).

TQ343.2Documentcode:AArticleID: 1001- 0041(2016)04- 0058- 03

Biography:HuaZhu(1981-),male,lecturer,beengagedinthestudyoffinechemicals.E-mail:Zhuhua2006@163.com.

猜你喜欢
纤维结构吡咯烷酮纺丝
N-甲基吡咯烷酮降解菌株的筛选鉴定及应用
工业微生物(2023年5期)2023-11-02 14:01:46
同轴静电纺丝法制备核-壳复合纳米纤维
聚乙烯吡咯烷酮分子三级中红外光谱研究
静电纺丝法制备正渗透膜材料
云南化工(2021年7期)2021-12-21 07:27:36
股骨近端纤维结构不良的研究进展
东华大学开发出全纤维结构智能电子皮肤
欧盟重新评估聚乙烯吡咯烷酮(E1201)和聚乙烯聚吡咯烷酮(E1202)作为食品添加剂的安全性
纤维结构不良合并动脉瘤样骨囊肿一例
磁共振成像(2015年9期)2015-12-26 07:20:34
静电纺丝制备PVA/PAA/GO三元复合纤维材料
数字直流调速器6RA70在纺丝牵伸系统中的应用