王雷辽河油田锦采中学
数学教学与其他学科的融合
王雷
辽河油田锦采中学
摘要:随着数学知识学习难度的加深,有些学生逐步丧失了对数学的学习兴趣,使数学成为一门枯燥无味、题海战术的学科,极大地影响了数学的学习.面对这种情况,我们应该帮助学生了解数学相关知识的来源和背景,使数学变成一门复合学科,使学生在真正的数学思维过程中,去创造一种属于自己的探索与研究数学的方法,激发学生对数学的学习兴趣。
关键词:数学教学;学习兴趣;融合
数学是人们对客观世界定性把握和定量刻画,逐渐抽象概括、形成方法和理论,并进行广泛应用的过程,数学并不是简单的计算,而是一门交叉性学科。
数学教学中需要采取哪些教学策略来融入数学史呢?可以说,这个问题目前还不为大多数的教师所充分认识和理解。
张奠宙教授在《重视“科学史”在科学教育中的应用》一文中指出:在数学教育中,特别是中小学的数学教学过程中,运用数学史知识是进行素质教育的重要方面。目前数学史在数学得教学中已经进入系统的研究阶段,而且在一些国家和地区进行了实践性的操作,并取得一定成果。我国的数学史研究,目前已经拥有相当规模的队伍。但是,我们目前的研究还并没有运用于教学过程,也没有发挥它的应有效益。
在通过教学实践的过程中,我总结了以下几种融合的方法,能力有限,仅供参考。
学生可能都知道历史上“韩信点兵”的故事:“今物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”用现代汉语表述为:“一个正整数,被3除时余2,被5除时余3,被7除时余2,假设这个数不超过100,问这个数多大?”我在教学过程中就加入了,韩信的一些小故事,很容易就把学生吸引进课堂教学之中,在我国古代明朝时,数学家程大位将此题解法写成诗歌“三人同行七十稀,五树梅花二一枝,七子团圆正半月,除百零五便得知”。如果文学功底不好的同学,估计题读不懂,解法也读不懂,这样很容易可以加入诗词背景理解。
比较有代表性的,在几何中的勾股定理,就有弦图证法、比例证法、面积证法等方法;而求解一元二次方程之中,就有公式法、几何方法、特殊值代入法、反演法、十字相乘法等;求不规则图形的面积,也有德漠克利法、穷竭法、割圆法、平衡法、开普勒法和沃利斯法以及现代的微积分方法.通过搜集比较各种不同方法之后,在数学教学过程中融入背景知识,学生理解更生动具体,记忆深刻,自然就会选择适合自己的方法去记忆。
再如代数符号的产生,在以前代数符号是没有的,直到印度人发明了数字,由后来阿拉伯人带入欧洲,才产生了质的飞越。每一次的进步,都集合了无数数学和其他学科先贤们的智慧,都充满了数学家们的心血;另外函数概念的发展,从笛卡尔给出最简单的函数概念出发,经莱布尼兹、贝努利、欧拉、柯西、黎曼、狄利克雷等人之始,一步一步的发展,过程经历了大约六、七次扩充,才得到了我们今天看到的函数概念,在数学教学过程中加入这些追踪性融合策略,会引导学生自由想象,查阅知识,培养兴趣。正如莱布尼兹所说:“了解重大发现,特别是那些决非偶然的,经过深思熟虑而得到的重大发现的真正起源,是极为有益的。”兴趣是最好的老师。
学习兴趣是指一个人对学习的一种积极的认知倾向与情绪状态。假设有一名学生对某一学科很感兴趣,那么这个学生就会持续地的学习它,自然就会提高学习效果,得到成绩。同时学习兴趣又是激励的一种力量。如果要解析学习兴趣。那么从心理学上的观点来看,我们可以把学习兴趣分为两个部分:第一、人的好奇心、、爱好构成了内部原因;第二、社会责任感构成了外部原因.我在学校任教过程中,对部分学生进行过数学兴趣抽样调查发现:“我不喜欢数学,但为了考试,我必须学好数学”的学生占被调查者的比例居然高达68%,而对数学“很感兴趣”的仅仅只有16%,现状堪忧。目前,由于学生缺乏学习动力,对数学的学习兴趣也不足.原因并不是因为数学本身枯燥,而是因为数学的融合性往往被在教学中所忽视了。设想一下,如果在数学教学中适当融合了其他学科的有关知识,增加了教学的趣味性,进行了学科教学的融合,结果显而易见的就会有利于提高学生对学习数学的兴趣。同时,也为我们培养复合型人才打好坚实的基础。
数学是美的,无数数学家、学者都为这种数学的美所折服。其中英国数学家、哲学家罗素就曾说过:“数学不久拥有真理,而且还拥有至高无上的美,一种冷峻严肃的美,就像一尊雕塑。。。。。。这种美没有绘画或音乐那样华丽的装饰,它可以纯洁到崇高的程度,能够达到严格的只有最伟大的艺术才能显示的完美境界”。
总之,在数学教学中融合其他学科,可以了解数学的发展过程,从而激发学生的学习数学兴趣,养成良好的学习习惯,培养学生的创新意识。前人的成功和失误,都是后人聪明的源泉。融合性的知识,复合型的人才,才是未来教育的方向。
参考文献:
[1]李文林主编.数学史概论[M].高等教育出版社,2008年02 月