来阿龙
摘要:研究了柔拓扑空间的连通性,在柔拓扑空间中定义了隔离柔集,利用隔离柔集给出了连通柔拓扑空间和连通柔集的概念,并为连通柔拓扑空间提供了等价的定义。通过引入了柔拓扑空间之间的连续序同态,证明了柔拓扑空间的连通性在连续序同态下具有不变性,最后得出了柔拓扑空间连通的几个充分条件。
Abstract: Connectedness of soft topological space is studied. The concept of separated soft set is introduced in a soft topological space. Using separated soft set, the notions of connected soft topological space and connected soft set are defined, and equivalent definitions of connected soft topological space are given. By introducing the notion of continuous order-homomorphism between soft topological spaces, connectedness of a soft topological space is proved to be invariant under a continuous order-homomorphism. Finally, some sufficient conditions for a soft topological space to be connected are obtained.
关键词: 柔集;柔拓扑空间;连通柔拓扑空间;连通柔集;柔拓扑空间之间的连续序同态
Key words: soft set;soft topological space;connected soft topological space;connected soft set;continuous order-homomorphism between soft topological spaces
中图分类号:O189.1 文献标识码:A 文章编号:1006-4311(2016)08-0250-03
0 引言
柔集理论[1]已应用到数学、信息科学、计算科学等多个学科领域并取得很大成就[2-4]。文献[4]定义了柔拓扑空间的概念,本文将在此基础上研究柔拓扑空间的连通性。我们先定义了连通柔拓扑空间并且讨论了它们的一些性质,证明了柔拓扑空间的连通性在连续序同态下具有不变性,最后得出了柔拓扑空间连通的几个充分条件。
1 柔集和柔拓扑
定义1.1[1] 集合X上的柔集定义为一个偶对(F,E),其中E是一个集合(称为指标集或特征集),F:E→P(X)是映射,P(X)是X的幂集,X上关于指标集E的柔集的全体记作S(X,E)。
参考文献:
[1]Molodtsov D. Soft set theory first results[J]. Computers & Mathematics with Applications,1999,37(4/5):19-31.
[2]Maji P K, Biswas R, Roy A R. Soft set theory[J].Computers & Mathematics with Applications, 2003,45(4/5):555-562.
[3]Feng F, Jun Y B, Zhao X Z. Soft semirings[J]. Computers & Mathematics with Applications.
[4]Shabir M, Naz M. On soft topological spaces[J].Computers & Mathematics with Applications,2011,61(7):1786-1799.